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Central idea

Combine gravity with the concept of anisotropic scaling.

In a spacetime with coordinates (t,x) ≡ (t, xi), i = 1, . . . D,
consider

x→ bx,

t→ bzt.

Here z is the dynamical critical exponent.

In condensed matter (and now even in string theory!), many
values of z are possible; integers (1, 2, . . . ), fractions, . . .

Example: Lifts of static critical systems (Euclidean QFTs) to
dynamical critical phenomena.

Goal: Construct similar models with propagating gravitons.
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Why is this interesting?

The changing role of gravity in the 21st century:

(i) Phenomenology of gravity in our Universe, of 3 + 1
dimensions; cosmology. How close can this resemble GR in IR?
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Why is this interesting?

The changing role of gravity in the 21st century:

(i) Phenomenology of gravity in our Universe, of 3 + 1
dimensions; cosmology. How close can this resemble GR in IR?

(ii) Gravity duals of field theories in AdS/CFT; in particular,
candidates for duals of nonrelativistic field theories;

(iii) Gravity on worldvolumes of branes;

(iv) Mathematical applications (theory of the Ricci flow);

(iv) Emergent Gaussian IR fixed points in lattice systems of
condensed matter.
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Comparison to Asymptotic Safety

Main goal: Search for a UV fixed point in gravity.

Asymptotic safety: looking for relativistic, nontrivial fixed
points. [Weinberg,. . . ]

Gravity with anisotropic scaling: looking for nonrelativistic,
often Gaussian fixed points.
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Price paid for improved UV behavior: Anisotropy between space
and time (or even spatial anisotropy) at short distances.

Flow between UV and IR: from z > 1 to z = 1.



5

Comparison to Asymptotic Safety

Main goal: Search for a UV fixed point in gravity.

Asymptotic safety: looking for relativistic, nontrivial fixed
points. [Weinberg,. . . ]

Gravity with anisotropic scaling: looking for nonrelativistic,
often Gaussian fixed points.

Price paid for improved UV behavior: Anisotropy between space
and time (or even spatial anisotropy) at short distances.

Flow between UV and IR: from z > 1 to z = 1.

The modified dynamics can mimic dark matter, [Mukohyama, . . . ]

mimic dark energy and suggest alternatives to inflation
[Brandenberger et al, Kiritsis et al, Lüst et al, . . . ].



6

Update on the status of Lifshitz gravity
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Example: Lifshitz scalar field theory
Many interesting features can be illustrated by:

S =
1
2

∫
dt dDx

{
φ̇2 − (∆φ)2

}
A theory closely related to the better-known

W =
1
2

∫
dDx ∂iφ∂iφ

The critical dimension has shifted:

[φ] =
D − 2

2
;

φ is dimensionless in 2 + 1 dimensions.

[Lifshitz,1941]
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Gravity at a Lifshitz point

Minimal starting point: fields gij(t,x) (the spatial metric),
action S = SK − SV , with the kinetic term

SK =
1
κ2

∫
dt dDx

√
g ġijG

ijk`ġk`

where Gijk` = gikgj` − λgijgk` is the De Witt metric, and the
“potential term”

SV =
1

4κ2

∫
dt dDx

√
g V (Rijk`)

containing all terms of the appropriate dimension.
Special case, theory in “detailed balance”: V = (δW/δgij)2.
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Extending the symmetries

A good starting point, but this action is only invariant under
time-independent spatial diffeomorphisms, x̃i = x̃i(xj), and
describes dynamical propagating components gij of the spatial
metric.

Covariantization of the theory:

(1) Introduce ADM-like variables N (lapse) and Ni (shift),
known from the space-time decomposition of the spacetime
metric;

(2) Replace ġij → Kij = 1
N (ġij −∇iNj −∇jNi),

√
g → N

√
g.
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Gauge symmetries: Foliation-preserving diffeomorphisms
DiffF(M),

δt = f(t), δxi = ξi(t, xj).

The transformation rules follow from a nonrelativistic
contraction of spacetime diffeomorphisms; N and Ni are gauge
fields of DiffF(M):

δN = ḟ(t)N + . . . , δNi = ξ̇j + . . .

In the minimal (=“projectable”) realization, N is a function of
only t.

Symmetries reminiscent of the Causal Dynamical Triangulations
(CDT) approach to quantum gravity on the lattice.
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Simplest example: z = 2 gravity

The action is S = SK − SV , with

Sk =
1
κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =
∫
dt dDx

√
gN

(
αRijR

ij + βR2 + . . .
)
.

Shift in the critical dimension, as in the Lifshitz scalar:

[κ2] = 2−D.

The minimal theory with N(t) has the usual number of
transverse-traceless graviton polarizations, plus an extra scalar
DoF, all with the dispersion relation ω2 ∼ k4.

Two special values of λ: 1 and 1/D.
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Another example: z = 3 gravity

The action is again S = SK − SV , with

SK =
1
κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =
∫
dt dDx

√
gN CijC

ij.

where Cij = εik`∇k(Rj` −
1
4Rδ

j
`) is the Cotton-York-ADM

tensor. The shift of the critical dimension is

[κ2] = 3−D.

Anisotropic Weyl invariance eliminates the scalar graviton
classically.
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Theory with detailed balance

The role of the condition of detailed balance is twofold:

(1) A technical one: Reduces the number of independent
couplings in the action.
In condensed matter, nongravitational examples of theories with
detailed balance exhibit a simpler renormalization structure.

(2) Perhaps a more conceptual one: The condition of detailed
balance arises in systems out of equilibrium, relating S to the
equilibrium theory described by W .

Detailed balance can be softly broken, or eliminated altogether,
in favor of the most general action of the effective field theory
approach.
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Entropic origin and detailed balance
Imposing detailed balance might be convenient for
mathematical simplicity. However, a remarkable physics parallel
exists: between gravity with detailed balance, and the
Onsager-Machlup theory of non-equilibrium thermodynamics.
[Onsager,Machlup 1953; Onsager 1931]

S =
∫
dt dDx

(
Φ̇aMabΦ̇b −

δW

δΦa
Mab

δW

δΦb

)
.

This OM action describes the response of thermodynamic
variables Φa to entropic forces δW/δΦa; W itself is entropy!

Formally, gravity at a Lifshitz point with detailed balance has
the same structure; mathematical formalism for understanding
the possible entropic origin of gravity?

cf. the heuristic ideas of [Verlinde,Jacobson,Smoot et al,. . . ]
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Emergent gravity at a Lifshitz point

[Cenke Xu and P.H., arXiv:1003.0009]

These models with z = 2 or z = 3 gravitons can emerge as IR
fixed points on the fcc lattice. Emergent gauge invariance
stabilizes new algebraic bose liquid phases.

Recall the emergence of U(1) “photons” in dimer models
[Fradkin,Kivelson,Rokhsar,...]:

Lattice symmetries protect z = 2 or z = 3 in IR, forbid GN .
But: interacting Abelian gravity is possible!
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Gravity on the lattice

Causal dynamical triangulations approach [Ambjørn,Jurkiewicz,Loll]

to 3 + 1 lattice gravity:

Naive sum over triangulations does not work (branched
polymers, crumpled phases).

Modify the rules, include a preferred causal structure:

With this relevant change of the rules, a continuum limit
appears to exist: The spectral dimension ds ≈ 4 in IR, and
ds ≈ 2 in UV. Continuum gravity with anisotropic scaling:
ds = 1 +D/z. ([Benedetti,Henson,2009]: works in 2 + 1 as well.)
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Relevant deformations, RG flows, phases
The Lifshitz scalar can be deformed by relevant terms:

S =
1
2

∫
dt dDx

{
φ̇2 − (∆φ)2−µ2∂iφ∂iφ+m4φ2 − φ4

}
The undeformed z = 2 theory describes a tricritical point,
connecting three phases – disordered, ordered, spatially
modulated (“striped”) [A. Michelson, 1976]:
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Phase structure in the CDT approach

Compare the phase diagram in the causal dynamical
triangulations:
[Ambjørn et al, 1002.3298]

C

B

A

Note: z = 2 is sufficient to explain three phases.
Possibility of a nontrivial z ≈ 2 fixed point in 3 + 1 dimensions?
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RG flows in gravity: z = 1 in IR

Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

∆SV =
∫
dt dDx

√
gN

(
. . .+µ2R− 2Λ

)
.

the dispersion relation changes in IR to ω2 ∼ k2 + . . .
the IR speed of light is given by a combination of the couplings
µ2 combines with κ, . . . to give an effective GN .

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?
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Modulated phases of gravity
[in progress, w/ Patrick Zulkowski and Charles Melby-Thompson]

First, classify all spatially homogeneous and isotropic phases.
Take gij = a2(t)γij(k), with k = 0,±1; set Ni = 0. The phase
diagram for k = 1 (at fixed R2 terms) looks like this:

forbidden zone

oscillating
(oscillating

hyperbolic)

de Sitter−like

Governed by the Friedmann equation,

(ġ)2 +R2 + µ2R− 2Λ = 0.
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Spatially homogeneous isotropic phases
of gravity

Examples of phases of gravity with k = 1: a de Sitter-like
phase, an oscillating cosmology (=“temporally modulated”
phase); the Einstein static universe appears at the phase
transition line, where the theory satisfies detailed balance.

Cosmology: [Kiritsis et al, Brandenberger et al, Lüst et al, many others]
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Comparison to GR in IR

The minimal, projectable theory in the IR:

S ∼
∫
dt dDx

√
g N

{
KijK

ij − λK2 + . . .+ µ2(R− 2Λ)
}
.

This looks accidentally as GR!



22

Comparison to GR in IR

The minimal, projectable theory in the IR:

S ∼
∫
dt dDx

√
g N

{
KijK

ij − λK2 + . . .+ µ2(R− 2Λ)
}
.

This looks accidentally as GR!

Discrepancies:

(1) λ = 1 forced in GR;

(2) In GR, N(t,x); here, N(t);

(3) Gauge symmetries differ: Diff(M) vs. Diff(M,F).

Together, (2) and (3) imply the extra scalar graviton.
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Projectable vs. nonprojectable

Simplest way to relax projectability: Declare N to be a function
of everything, see what happens. This has worked in the
ultralocal theory, leading to general covariance and the closure
of the constraints.

Effective field theory says: Allow all terms in the action,
compatible with the symmetries. New terms: built out of
∇iN/N . New constraints second-class, no additional gauge
invariance.
(Literature: “healthy extension” of HL gravity)

Artificially disallowing such terms (an “unhealthy reduction”?):
The constraint algebra in trouble, for z > 1. (Salvaging it leads
to a reduction of DoF, effectively a topological theory.))
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Ultralocal gravity

In retrospect, one example of a theory of gravity with
anisotropic scaling has appeared in the literature already in the
1970’s: the ultralocal theory of gravity [Isham;Teitelboim;Henneaux]

It results simply from eliminating all derivative terms from the
potential, and setting

SV = 2Λ.
Hamiltonian: as in GR, just

H =
∫
dDx

(
NH⊥ +NiHi

)
.

Remarkably, this theory is “generally covariant” – it has the
same number of gauge symmetries per spacetime point as GR.
The symmetry algebra is not that of GR, instead it is deformed
into spatial diffeomorphisms and a local U(1) symmetry.
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Nonrelativistic general covariance

Why do we want N to be the function of t and xi? N is related
to g00, and that is where the Newton potential is.

Strategy: Keep the subleading, O(1/c2) term in g00:

g00 = −N(t)2 +
2NA(t,x)

c2
+ . . . ,

and the subleading term α in the time reparametrizations as we
take the c→∞ limit.

This α generates an extra U(1) gauge symmetry,

δA0 = α̇−N i∂iα, δNi = ∂iα, δgij = 0.
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Linearized theory

U(1)×Diff(M,F) works beautifully, but only when λ = 1
(that’s good!).

New coupling required:∫
dt dDx

√
g AR.
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Linearized theory

U(1)×Diff(M,F) works beautifully, but only when λ = 1
(that’s good!).

New coupling required:∫
dt dDx

√
g AR.

Extension to nonlinear theory: Obstructed!

δαS ∼
∫
dt dDx

√
g α

(
Rij − 1

2
Rgij

)
(ġij − 2∇(iNj)).
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Three easy ways out

The obstruction

δαS ∼
∫
dt dDx

√
g α

(
Rij − 1

2
Rgij

)
Kij

goes away in three simple cases:

(1) in 2 + 1 spacetime dimensions (but no spatial curvature);

(2) in Abelian gravity (an interacting theory);

(3) if we also add subleading Aij fields in 1/c expansion of gijj;
gives a topological theory.
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General covariance at a Lifshitz point

At λ = 1, the obstruction exists for U(1)Σ even before gauging.
Strategy: First repair the global U(1)Σ, then gauge it.

Introduce an auxiliary scalar, the Newton prepotential: ν

δν = α.

Repairing the global U(1)Σ:

∆S ∼
∫
dt dDx

√
g ν

(
Rij − 1

2
Rgij

)
Kij

+
∫
dt dDx

√
g ν

(
Rij − 1

2
Rgij

)
∇i∇jν.
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Gauging the global U(1)Σ

Now introduce A, add new terms∫
dt dDx

√
g A(R− 2Ω).

(Ω is a new relevant coupling, compatible with the repaired
U(1)Σ.)

Spectrum:Just the transverse-traceless (=tensor) graviton
polarizations; the scalar graviton is a gauge artifact of U(1).

Detailed analysis of Hamiltonian constraints confirms this count
of DoF.
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Preview of IR regime: Compact objects

Static compact object solutions? Schwarzschild geometry solves
the equations of motion of the infrared limit of our theory with
Ω = Λ = 0.

Proof: For static solutions, Kij = 0 and the rest of EoM is
equivalent to EoM of a reduced action,∫

dDx
√
g (N −A)(R− 2Ω).

The same is true for GR, if we identify N = N −A as the GR
lapse function, and set Ω = Λ. This gives a map between static
solutions of GR and the IR limit of our theory (and ν = 0).

Consequence: the β and γ coefficients of PPN take the GR
values!
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Preview of IR regime: Lorentz symmetry

Perhaps the most difficult challenge: How to explain the high
degree of Lorentz invariance seen in Nature.
In particular, what makes all species see the same speed of light?
(These might be strong coupling issues.)

Lorentz invariance as a global symmetry: Consider boosts

δt = bix
i, δxi = bit.

In the minimal (=projectable) theory, this is not a symmetry:
the background defines a preferred frame.

In the theory with nonrelativistic general covariance, the boost
is a symmetry of the flat spacetime! It decomposes into a U(1)
transformation with α = bix

i, and a Diff(M,F).
Preferred frame effects are only associated with ν.
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Preview of IR regime: Cosmology?
Are standard cosmological spacetimes also solutions? The static
patch of de Sitter (or AdS) solves the IR EoM) (reasons
identical to the proof for Schwarzschild).
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Preview of IR regime: Cosmology?
Are standard cosmological spacetimes also solutions? The static
patch of de Sitter (or AdS) solves the IR EoM) (reasons
identical to the proof for Schwarzschild).

Observational cosmology prefers the homogeneous, isotropic
and hence time-dependent foliation of the FRW Ansatz.
However, the variation of A gives

R− 2Ω = 0,

and time-dependent foliations by maximally symmetric slices
will not be solutions.

Three possible ways out: (1) add matter;
(2) put cosmology in an unconventional gauge, with Ni 6= 0;
(3) when Ω = 0, de Sitter in inflationary, spatially-flat
coordinates is a solution!
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Conclusions
The map of the new continent of gravity with anisotropic
scaling is getting more precise.

Quantum gravity with nonrelativistic general covariance:
• exhibits an improved short-distance behavior associated with
anisotropic scaling and z > 1,
• closely resembles general relativity at long distances,
• but the role of the Newton prepotential is still rather
mysterious . . .


