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Reheating Temperature Tr

~ highest temperature in the rad. dom. universe.
= one of the most important parameters of cosmology.
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~ highest temperature in the rad. dom. universe.
= one of the most important parameters of cosmology.

..... but the only known observational constraint is:
Te > a few MeV. (from BBN)

Possible probes of Tr

® Gravitational Wave Nakayama, Saito, Suwa, Yokoyama, 08

® CMB Martin, Ringeval,'10 <-- talk by C.Ringeval on Monday

® BBN with long-lived charged massive particle (for low TR). Takayama, 07
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Reheating Temperature Tr

~ highest temperature in the rad. dom. universe.
= one of the most important parameters of cosmology.

..... but the only known observational constraint is:
Te > a few MeV. (from BBN)

Possible probes of Tr

® Gravitational Wave Nakayama, Saito, Suwa, Yokoyama, 08

® CMB Martin, Ringeval,'10 <-- talk by C.Ringeval on Monday

® BBN with long-lived charged massive particle (for low TR). Takayama, 07

Q: Any (indirect) hint from LHC ??
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Main message of this talk:

e &

IR USY + gravn‘mo DM + s'rau NLSP
1S reallze |n

_»

/

4

The | imodel dependent ?
\ f ... Yes, but the model itself is testable at the LHC.
g signal: metastable massive charged particle

(cf. L.Roszkowski's ’ralk on Monday)
At 7 IF observed, "gravitino DM + stau NLSP”

TR 5 (one of) the best candidates.

% (The underlying supergravity may also be tested.

N mO Buchmuller, KH, Ratz, Yanagida,'04)
\§ RN CRISSRGINNGE SN NIRRT IR RS NGANGC SaDC SN AT SN
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SUSY + gravitino DM + stau NLSP




scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, ...
® most non-SUSY scenarios for BSM — low E cut-off
— how to discuss T > cut off ?2: inflation/reheating/baryogenesis....
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, .....

® most non-SUSY scenarios for BSM — low E cut-off
— how_to discuss T > cut off ?2: inflation/reheating/baryogenesis....

why glj In SUS\.( models + R-pari’r.y, |
LSP (=Lightest SUSY Particle) is stable.

=) If neutral, Dark Matter candidate!
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, ...
® most non-SUSY scenarios for BSM — low E cut-off
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why gr In SUSY Standard Model in SUGRA,.....
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squarks : (

ur ) UR;
dr ), dr;

————

gauginos and higgssinos : ;f;’ : x;h, g

gravitino: G
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® naturalness, coupling unification, DM, ...
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why gr In SUSY Standard Model in SUGRA,.....

sleptons :

squarks : (

dr
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————

gauginos and higgssinos : ;‘:?, x;t,

neutral and color-singlet

gravitino :
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, .....

® most non-SUSY scenarios for BSM — low E cut-off
— how to discuss T > cut off ?2: inflation/reheating/baryogenesis....

why gravitino DM ? cf. talk by L.Covi
DM candidates in minimal SUSY model

— only(gravitinoor neutralino are allowed.

Note:

another interesting possibility: O(eV) gravitino + composite DM.
Nakamura, KH, Shirai, Yanagida, 09

Nakamura, Shirai, in preparation
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, ...
® most non-SUSY scenarios for BSM — low E cut-off
— how to discuss T > cut off ??2: inflation/reheating/baryogenesis....

why gravitino DM ? cf. talk by L.Covi
DM candidates in minimal SUSY model

— only(gravitinodor neutralino are allowed.

why stau (slepton) NLSP?
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scenario: SUSY + gravitino DM + stau NLSP

why SUSYe

NLSP (Next-to-Lightest SUSY Particle)

® naturalness,
® most non-SLl
— how to dis

why gravi
DM candi¢

— only@

why stau | ...

P
- Ty

In Gravitino LSP scenario, the NLSP is long-lived.

R-parity 4 (even)

R-parity — (odd)

MNLSP
1 extremely weak

interaction
mea _Lsp

NLSP can decay
only to Gravitino

Lifetime e.g. for mnLsp =~ 200 GeV

m™~Lsp ~ O(day) for mg ~ 10 GeV
Twisp ~ O(10 min) for mg ~ 1 GeV
T~Lsp ~ O(10 sec) for mg ~ 0.1 GeV
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Why Stau NLSP ?

In general, from RGE, tendency is

e M(color singlet) < M(colored)

* M(weak singlet) < M(weak charged) |
e M(3rd family) < M(1st and 2nd family) P ‘
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gluino

e

q
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[ In most cases, either Stau or Neutralino is the NLSP
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, ...
® most non-SUSY scenarios for BSM — low E cut-off
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— onlycgravitino>or neutralino are allowed.
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in most models, NLSP = stau or neutralino
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scenario: SUSY + gravitino DM + stau NLSP
why SUSY?

® naturalness, coupling unification, DM, .....

® most non-SUSY scenarios for BSM — low E cut-off
— how to discuss T > cut off ?2: inflation/reheating/baryogenesis....

why gravitino DM ? cf. talk by L.Covi
DM candidates in minimal SUSY model

— only(gravitino>or neutralino are allowed.

why stau (slepfon) NLSP? /,falk by L.Covi
in most models, NLSP =stau pr neutralino

— stau = long-lived charged particle.
important for cosmology and collider.
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. 2 | | Tr determination at the LHC with long-lived staus.

- J

..... in gravitino DM scenario with stau NLSP.

M.Endo, KH, K.Nakaji, in progress
+ S.Asai, KH, S.Shirai, 09

See also related works:
Choi, Roszkowski, Ruiz De Austri,'07
Steffen,’08
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TR determination at the LHC with long-lived staus.

..... in gravitino DM scenario with stau NLSP.

. How 7?7
4 )

POINT: gravitino abundance is determined by Tr

fime fempera’rure
?? | mﬂahon

27 %? TR Reheating — gravitino

10y | '
10%yr| 3 K today v
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TR determination at the LHC with long-lived staus.

J

..... in gravitino DM scenario with stau NLSP.

.. HOW 27

4 )

POINT: gravitino abundance is determined by Tr

3GeV\ /Moluing 2 Tr
gt~ 01302V () (Ta )
G U ( mg ) 1 TeV 108 GeV
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TR determination at the LHC with long-lived staus.

J

..... in gravitino DM scenario with stau NLSP.

.. HOW 27

4 )

POINT: gravitino abundance is determined by Tr

3GeV TN olui ‘ TR
gt = 01 (20V) (e (T )
G ( mg ) 1 TeV 108 GeV
— Qpuh® =0.11

A

assumption
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..... in gravitino DM scenario with stau NLSP.

.. HOW 27

4 )

POINT: gravitino abundance is determined by Tr
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/
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assumption measure at LHC
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TR determination at the LHC with long-lived staus.

J

..... in gravitino DM scenario with stau NLSP.

.. HOW 27

4 )

POINT: gravitino abundance is determined by Tr

v]//“’/
A\ "14
\
/
‘!», y }'
)’ i ; \ /

assumption measure at LHC determined !
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TR determination at the LHC with long-lived staus.

~
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3GeV ™Molui 2 TR
g = 01 (262 (T
G 0 ( mg ) 1 TeV 108 GeV
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TR determination at the LHC with long-lived staus.

~N

J

3GeV\ [ Motuing \ 2 Tr
gt ~ 01 (FCEV) (ma)?( T )
G U ( mg ) 1 TeV 108 GeV
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass
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TR determination at the LHC with long-lived staus.

J

2

Qph? ~ 0.1(3Gev) (mglum"

Tr )
me 1 TeV

03 GeV

step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime J
step 4

measure gluino mass
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TR determination at the LHC with long-lived staus.

_h2 A 3GeV (mgluino
Hgh” = 0'1( mg ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
TN~
step 3 T

measure stau lifetime J
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.

L2 A 3 GeV (mgluino
Hgh” = 0'1( meg ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
- TN~
step 3 T

measure stau lifetime J
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.

3GeV\ Mgy
Q~h2 ~ 1 ( gluino
¢ ) ( me ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
»mf,;:

step 3 /

measure stau lifetime J
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.

3 GeV Molui
Q’th ~ 1 ( gluino
¢ ) ( me ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
»m;;

step 3 /

measure stau lifetime /
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.
3GeV) (Mg (@
1.2 gluino
Hh” = 0'1( mg )<1Te\/'> 108Ge\/>
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass

J
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TR determination at the LHC with long lived sfaus

,,L ~, .. _'\,.-

heavy charged par’rlcle
Q h?} $(like muon)
,low velocity (# muon)

ATLAS

----- slepton
107 muon

step 1= \
see sfaus % &,[ RL.Aﬁ‘NST
step 2 { '

measure S

li ""
04 05 06 07 08 09 1 1.
B h

ATLAS, 0901.0512

W-pv candidate in
7 TeV collisions

, http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY /events.html

measure gluino mass
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TR determination at the LHC with long-lived staus.
3GeV) (Mg (@
1.2 gluino
Hh” = 0'1( mg )<1Te\/'> 108Ge\/>
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass

J
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TR deter y velocity measurement
$ (+ momentum masurement)  mass = p/(Py)

T

<800

< - |
%2000? 2700— ATLAS
51800 3
3 3 |
1600}~ 600}

4 ‘
3
J 800} 300}
1 600}
P - 2001
“ 9 1 1

200 “

feews i P o301 .

See S'|' ‘i R A RN s
Figure 18: B resolution and reconstructed mass for sleptons from the GMSBS sample. '
sfep 2 ATLAS, 0901.0512
step 3
measure stau lifetime
step 4

measure gluino mass
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TR determination at the LHC with long-lived staus.

3 GeV Mol 2
gt ~ 01 (30 (mamee? CLu)
G ) ( mg ) 1 TeV /) \108GeV
step 1

see staus at the LHC
step 2

measure stau mass
step 3 y»

measure stau lifetime
step 4

measure gluino mass
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stau lifetime measurement [Asai, KH, Shirai,’ 09]
e typically most of staus have large

velocity and escape from detector.
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stau lifetime measurement [Asai, KH, Shirai,’ 09]
e typically most of staus have large

velocity and escape from detector.

R DR — T ANEH fvon Detectors Electromagnetic Calorimeters

but we cant see
its decay in
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stau lifetime measurement [Asai, KH, Shirai,’ 09]
e typically most of staus have large

velocity and escape from detector.

* but some of them have sufficiently small
velocity and stop at calorimeters.

RDNR— "/"\3!1] fuon Detectors Electromagnetic Calonimeters
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stau lifetime measurement [Asai, KH, Shirai,’ 09]
e typically most of staus have large

velocity and escape from detector.

* but some of them have sufficiently small
velocity and stop at calorimeters.

RDNR— "/"\3!1] fuon Detectors Electromagnetic Calonimeters

-fla = —
- £ -
——
,
|
1 » B >
- ‘.l - —{ \.
| e " 4 '
)
b g /’

-

LI &)
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Figure 1-i Overzll layout of the ATLAS detector.

* but their late-time decay has wrong timing
and wrong direction;

e difficult to reject backgrounds

e difficult to trigger:

..... during pp collision.
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stau lifetime measurement [Asai, KH, Shirai, 09]

Idea:

use periods of no pp collision !

two possible strategies:

e for long lifetime: use shutdown time.

e for short lifetime: use beam-dump signal.
(or use empty bunch.)
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e for long lifetime: use shutdown time

running (pp collision) winter shutdown
stopped
time
e S 3 >
2 2%
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e for long lifetime: use shutdown time

running (pp collision) winter shutdown

< >

sfopped change
trigger menu

time

RERERE—E

e

201011 B4HAKEH



e for long lifetime:

running (pp collision)

stopped

use shutdown time

winter shutdown

< >
change

trigger menu

time

P
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events

J \‘\‘\A time

N\~
ZAV >
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

(1) missing ET > 100 GeV
(2) 1 jet PT > 100 GeV + 2 jets PT > 50 GeV

(3) isolated track with PT > 0.1 m(stau).

(4) extrapolate the track to calorimeter and energy deposit < 0.2 p(stau).
(5) extrapolate the track to muon system and no muon track.

SUSY stopped!!
events

J \\‘\A time

N\~
ZAV >
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

SUSY stopped!!
events

J \‘\‘\A time

N\~
ZAV >

201011 B4HAKEH



e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
| AR . ) trigger

(II) send a beam-dump signal, which immediately

stops the pp collision.

beam-dump

SUSY stopped!!

time
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
frigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

time
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
frigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

time
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
frigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump

< >
change

trigger menu

SUSY stopped!!

decay!! time
........................ ﬁ >
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e for short lifetime: use beam-dump signal.

(I) select the stopping event by online Event Filter.

r
trigger
(II) send a beam-dump signal, which immediately A) 99
stops the pp collision.

(III) change the trigger menu to the one optimized
for stau decay.

(IV) wait for stau decay.

beam-dump restart pp collision
< >
SUSY stopped!! . Epeuge SUSY
events tfrigger menu events
/ M decay!! St \ time
74 sAz <
........................ >SS 2,
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olifetime measurement: Result

TABLE III: Expected statistical errors for each lifetime. (Np)
is the expected number of staus’ decays in the corresponding

period. (SPS7 point)

10 fb~* 100 fb~*

lifetime |(Np) o (Np) o

0.1 sec | 0.01 | 0.1 sec | 0.1 | =0.1 sec Shor'l- )

0.2sec | 1.8 |£0.15 sec| 18 |=£0.05 sec A Gssumphon
0.5sec | 35 | 0.1 sec | 352 |x0.03 sec

1 sec 96 | 0.1 sec | 956 |=*0.04 sec o ]

10 sec | 235 | =0.7 sec | 2353 | 0.2 sec dead .'-lme' l Sec

100 sec | 257 | +7 sec |2574 | 42.0 sec waifing time: 30 min.
1000 sec| 217 | T150 sec | 2168 | +51 sec

10 day | 26 |+2.2 day| 262 | +0.7 day

100 day | 143 | 32 day | 1430 | 3] day running: 200 days
10 year | 14 | T% year | 138 | 71 year .

50 year | 2.8 | 751" year| 28 | 1% year SthdOWn. loo days
300 year| 0.5 - 5 | 133 year

v
long

O(0.1 sec ... 100 years) can be probed!!
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TR determination at the LHC with long-lived staus.
3GeV) (Mg (@
1.2 gluino
Hh” = 0'1( mg )<1Te\/'> 108Ge\/>
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass

J

201011 B4HAKEH



4 )

TR determination at the LHC with long-lived staus.

\_

3GeV by mvarlan’r mass me’rhod

mCNJ ; [cF Ito, Kitano, Moroi,'09]

Qéh2 ~ 0.1(

tep 1
see staus at the LHC il

step 2
measure stau mass l

e i |
{; mass /[ | 0 ity
S.I-ep 3 @100fb"-1 R

900 1000 1100 1200 1300 1400

measure stau llfehme R

; ! Gluino mass is more difficult but }

Sfep 4 b pibe ‘ linsi’r.
measure gluino mass S
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TR determination at the LHC with long-lived staus.

~N

J

3GeV\ [ Motuing \ 2 Tr
gt ~ 01 (FCEV) (ma)?( T )
G U ( mg ) 1 TeV 108 GeV
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass
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TR determination at the LHC with long-lived staus.

3GeV\ Mgy
Q~h2 ~ 1 ( gluino
¢ ) ( me ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
»mf,;:

step 3 /

measure stau lifetime J
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.

3 GeV Molui
Q’th ~ 1 ( gluino
¢ ) ( me ) 1 TeV
step 1
see staus at the LHC
step 2 48T M2’
measure stau mass T~ = -
»m;;

step 3 /

measure stau lifetime /
step 4

measure gluino mass ~
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TR determination at the LHC with long-lived staus.
3GeV) (Mg (@
1.2 gluino
Hh” = 0'1( mg )<1Te\/'> 108Ge\/>
step 1

see staus at the LHC
step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass

J
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TR determination at the LHC with long-lived staus.

J

N 3GeV (mglum)? (@)
Hah” = Ol( mg ) 1 TeV 108 GeV
step 1
see staus at the LHC

Step 2

measure stau mass
step 3

measure stau lifetime
step 4

measure gluino mass
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Tr determination at the LHC with long-lived staus.
3GeV\ /Mgy 2(@
“h2 ~u gluino
Hat = 0'1( me )<1Tev) 108Ge\/>
step 1 ® Which range of
see staus at the LHC BACUEEISRERGEECEN Y

Step 2 ® Which range of Tr can
measure stau mass be tested?

J

step 3 ® Is it possible at the
measure stau lifetime KN ERVARD K
step 4

measure gluino mass

201011 A48 KEH




Probing high Tr scenario
at the LHC with long lived stau.

M.Endo, KH, K.Nakaji, arXiv:1008.2307

See also earlier works:
Choi, Roszkowski, Ruiz De Austri,’07
Steffen,'08
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,

at the LHC with long lived stau.| “7"7%
Logic
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (mF)
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(ii For a given stau mass
— upper bound on gravifino mass

103 i ] ]ll""l I RRRLL |
max
mg < mg (mz)
~
Q
)
0
©
-
. -
BBN : constraint on (Y7, 75) 3
0
YT — Y; (m;)
7-? p— 7-? (m?’ mc"‘;’) 102 EERTTTT B !
, 102 10 1 10 102 109
> constraint on (m?a mé) Gravitino Mass (GeV)

Kawasaki, Kohri, Moroi, Yotsuyanagi, 08
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (mF)
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (m7)

~

3 GeV TR T sluino 2
QO~h? ~ 0.1 ( )( : ) — Qnpuh’ =0.11
G 0 ( mg ) 103GeV/ \1 TeV DM 0
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (mz)

~

3GeV TR MM gluino 2
Q=h? ~ 0.1 ( )( g ) — Qpvh’® =0.11
G y ( mg ) 108 GeV /) \1 TeV bM 0

(2) + for a given TR

— upper bound on gluino mass
Fujii, Ibe, Yanagida, 04
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (mz)

~

3GeV TR MM gluino 2
Q=h? ~ 0.1 ( )( g ) — Qpvh’® =0.11
G y ( mg ) 108 GeV /) \1 TeV bM 0

(2) + for a given TR

— upper bound on gluino mass
Fujii, Ibe, Yanagida, 04
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

Logic
(i} For a given stau mass
— upper bound on gravifino mass

max

mg < mg (mz)

~

3GeV TR MM gluino 2
Q=h? ~ 0.1 ( )( g ) — Qpvh’® =0.11
G y ( mg ) 108 GeV /) \1 TeV bM 0

(2) + for a given TR \

— upper bound on gluino mass
Fujii, Ibe, Yanagida, 04
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,

at the LHC with long lived stau.| “7"7%
Result
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Probing high TR scenario
at the LHC with long lived stau.

M.Endo, KH, K.Nakaji,

Result
;2500 l
(" I
e
2 2000} Ta=10° GeV|
E _ I 100 -....
o =
£ |
5 »
5 1500 coF
i | 1000
°°°° [ R
1000? --------------------- ‘////
i P 1.=3x10 Gev|
i — stau non NLSP
500~ e T T, =5x10 GeV
P TIPS Y .ot RTINS Brarerars rarerardl [PAPSrArs PRI PP
100 200 300 400 500 600 700 800 9S00 1000

stau mass (GeV)

@) = normal case

/

(in most cases) Stau annihilation is
dominated by Electroweak process

Note: take m(bino)=m(wino)=1.1m(stau)
to have conservative bound on TR.

arXiv:1008.2307
<2500 _
8 f Ta=3x16 GeV“
; .
000 .
E 7100 .-
o
£ T,=10° GeV
=1500
)

LT 1000 e o

1000

—

500
1111111 At Uy

' T N A
100200 300 400 500 600 700 800 900 1000
stau mass (GeV)

®) = reduced Ystau

/

Stau annihilation is dominated by
enhanced Higgs coupling

see, Ratz, Schmidt-Hoberg, Winkler,'08
Pradler, Steffen,'08
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Probing high Tr scenario

at the LHC with long lived stau.

M.Endo, KH, K.Nakaji,
arXiv:1008.2307

Result
< 2500 | 5
> Q
1o} ‘ ' -
S /7]
2 2000] | Tt Gev| 20001~
s ) | 100 -.... £ )
O = - £ !
= | E
- ! :
S 1500| o | %1500 CDF -
i | 1000 -
s e 10 ccceccccccctnnccncnnnnss - —_
1000_ ------------------ —//// 1000’_
=2y =3x10 GeV| :
st on NLSP i
Tadeev| o on 5001
| | - ~_r-

=10ﬂ GeV

i 1 [T=3x10 Gev

Ll L

7100 ...
T,=10° GeV

LT 1000 e o

.....
----------------

stau mass (GeV)

= normal case

100—200 300 400 500 600 700 800 900 1000

stau mass (GeV)
®) = reduced Ystau

upper bound on the gluino mass for given TR
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

2000}

-
-
L

# of produced staus
| &~ at 14 TeV 10fb™"

" of produced staus
= at 7 TeV 1fb!

upper bound on

stau mass (GeV)

the gluino mass for given TR
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.

arXiv:1008.2307

2000}

gluino mass (Ge

—_
(4]
o
o

1000

# of produced staus

| &~ at 14 TeV 10fb-!

- H of produced staus
“ at 7 TeV 1fb!

I Al checked: after triggers and cuts, 20-50% events remain.

] {_trigger assumption:
' 7 [>=1 isolated e (pT>20GeV), or

querh

\pT >20 GeV & eta<2.5 & 05<PB <09 ->almost background free!

>=1 isolated mu (pT>40GeV), or
>=1 isolated tau (pT>100GeV), or

stau cuts assumptions:

>=1 isolated stau (pT>40 GeV and >0.7, eta<1.0 or B>0.8, eta<2.8), or
>=2 staus (pT>40 GeV and B>0.7, eta<l.0 or B>0.8, eta<2.8)

J
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

2000}

-
-
L

# of produced staus
| &~ at 14 TeV 10fb™"

" of produced staus
= at 7 TeV 1fb!

upper bound on

stau mass (GeV)

the gluino mass for given TR
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Probing high Tr scenario

at the LHC with long lived stau.

M.Endo, KH, K.Nakaji,
arXiv:1008.2307

Result
S ! # of produced staus
M | .
G000 L7 at 14 TeV 10fb"!
%15°°:CDF '

i I

-
-
L

" of produced staus
= at 7 TeV 1fb!

I / .
- //
5001 ;,: et Gov stau non NLSP
Y A B e A T N N T B
# 400 500 600 700 800 900 1000
F stau mass (GeV) TR > a FQW 108 Gev
’ (a)

can be probed
at 7 TeV 1fb! Il

upper bound on the gluino mass for given TR
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SUMMARY
Main message of this talk:

If SUSY + gravitino DM + stau NLSP
IS realized in nature,

4 )

The Tr can be determined at the LHC.

4 )

At 7 TeV 1fb™ (= within 2 years),

Tr > a few 102 GeV can be tested
in most of the parameter space!

\_ J
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Le’r's Have a Coffee !




additional slides
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SUMMARY

If metastable heavy charged particle
will be observed at the LHC,

— SUSY + gravitino DM + stau NLSP
is the leading candidate, (which can be tested)

4 )

the Tr can be determined at the LHC,

- J

(assuming no dilution, and OmegaDM=0OmegaG)

4 )

at 7 TeV 1fb™t (= within 2 years),

Tr > a few 108 GeV can be tested
in most of the parameter space!

- J
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Reheating Temperature Tr

~ highest temperature in the rad. dom. universe.
= one of the most important parameters of cosmology.

® determined by inflaton decay rate:
Ly ~ miy/Mg
TR ~ \/P¢Mp ~ 1010 GeV(m¢/1013 GeV)3/2

® important for baryogenesis:

(e.g. thermal Leptogenesis —3 Tr > O(10° GeV)
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* typically most of staus have large
velocity and escape from detector.

* but some of them have sufficiently small
velocity and stop at calorimeters.

-
TABLE II: The number of stopping staus for 10 fb™'.

example OF SUSY with cuts|without cut%’

: w00 | sos assume (ATLAS):
model point SPS7 | Fe 1440mm (barrel)
(Osusy =3.5pb) 5,

Cu 1400mm (end-cap)
0.4
0.3 :— .'0:.:..":'.;; '.s: S L )
from ASGi, KH, ....:o.o-?".:‘;;\, 0 . \ SfOPPed eoven'l's
Shirai ‘09 0.2 .'.‘.'°:.:,":-.'.'..' e about 1% of
ok Ter W total SUSY events
(See related work 032 lllll L n * a few per df‘y
“stopping gluino”, cT (for 10°3/cm™2 s)
Arvanitaki €'|'.Cl|.) FIG. 1: n — (7 distribution of the staus. The red line shows

the limit for the stau to stop in the detector.
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Probing hlgh TR scenario M.Endo, KH, K.Nakaji,
at the LHC with long lived stau.| 7

92500 - [, M >
- T,=10°Gev| 1 !
- . o | iT.=3"10"Gev| /
~— - ' ’ '
8 = ' L ‘ /
@ 2000} : : /

8
T,=10" GeV

gluino mass (GeV)
S o
3 3
|
i ooeee
3
=1
>
Ge

L : E 100
- : 100 — - —
: : B - T,=10° GeV
' : = 1500 A=
1500[ cor : S R
. i 1000 : CDF y 1000 /
1." - / .................
1000:— 1000 // ........
- -? """""" '\'\fﬂ_o --;. N a L T 100 e T
// T,=3*10° GeV .
500} T.-5'10° gev| StaU non NLSP 500 stau non NLSP

........ | . . 1. ... |, ... |,., .. |, .,
500 600 700 800 900 10
stau mass (GeV)

(b)= reduced Ystau

production cross section of CHAMPS with
® eta < 0.7

® pT > 40 GeV
® 04<PB<09
® sum(ET, R<0.4) /pT < 0.1
should be less than 10 fb (2 sigma)
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