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Curvaton scenario

I In the curvaton scenario the primordial perturbations are not
sourced by the inflaton, but by another scalar field, σ.

I In the simplest curvaton model the potential is quadratic, and
there is essentially one free initial condition, the initial field
value σ∗ or r∗ ≡ V (σ∗)
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I Long after inflation has ended, the curvaton decays into
radiation producing the observed primordial perturbations.

I Motivation for a TeV mass curvaton is obvious: LHC is
powering up, and there are strong hints that there is
something just around the corner.



Bounds

I The curvaton must produce the observed amplitude of the
primordial perturbations, ζ ∼ 1.9× 10−5:
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I The curvaton will produce some amount of non-Gaussianity,
and observationally we know that (roughly) |fNL| < 100. The
rough estimate for fNL is given by 1/rdecay:
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I The primordial perturbations are known to be adiabatic to a
great accuracy. Thus the curvaton must decay before DM
decouples. We assume a very conservative limit for the
effective decay constant, Γ > 10−17GeV.





Could there be self-interactions?
I The curvaton must have some interactions: It must decay!

I The most minimal addition to the potential is a monomial:

Vint = λ
σn
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I To be conservative, make the self-interaction very weak (for
n > 4): Put λ = 1 and choose M = MPl.

I In order for the quadratic model to be a good approximation,
the quadratic term must dominate the non-quadratic term
throughout the evolution. Since the energy density of the
curvaton decreases monotonously, we require

1

2
m2σ2∗ �

σn∗
Mn−4

Pl

.



This is for n = 8. For smaller values of n, the black line is even
more to the left.



Effect of the self-interactions

I The dynamics of the self-interaction of this type have been
documented previously, see e.g. [arXiv:0906.3126] and
[arXiv:0912.4657].

I On average, the self-interaction decreases the amplitude of

the perturbations, ρ ∝ a−
6n
n+2 .

I The self-interaction makes the EOM non-linear, and causes
slow oscillations. The phase of these oscillations freezes in
when the quadratic oscillations start, and cause strong
dependence on the initial conditions.



I For some initial conditions the perturbation is damped, but for
some strongly enhanced. The values of N ′ and higher
derivatives oscillate as a function of the initial conditions.



Different values of n

I We use δN-formalism to calculate Γ, fNL and gNL, while
keeping ζ fixed using a code developed for [arXiv:0906.3126].

I We scanned through different values of the potential,
n = 4, 6, 8 and 10, and concluded that n = 4, 6 and 10 are
disallowed.

I Only the σ8-interaction enhances ζ enough, so that it can
I produce the observed amplitude of the perturbations while
I not decaying too late
I and not producing too large fNL and gNL.



ζ = 19.1× 10−5, Γ > 10−17GeV,
−6 < fNL < 111 and −3.5× 105 < gNL < 8.2× 105.



Large non-Gaussianity

I Even though the allowed regions have −6 < fNL < 111 and
−3.5× 105 < gNL < 8.2× 105, most of the regions still have
large |fNL| and/or |gNL|.



Conclusions

I For a curvaton with a TeV scale mass, even very weak
self-interactions will always play a significant role in its
evolution.

I For Planck scale suppressed monomials, only Vint ∼ σ8 can
work.

I The self-interaction will typically produce large
non-Gaussianity.

I Since there is no simple relation between fNL and gNL, the
other one can be very large while the other one is very small.



Backup



Solving the self-interacting model

I The introduction of the self-interaction makes the system
non-linear, and the evolution of the background field value
and the perturbation is different.

I Use the ∆N-formalism to solve the model. The system is
described by

σ̈ + (3H + Γ)σ̇ + V ′(σ) = 0

ρ̇r = −4Hρr + Γσ̇2



A rough sketch of a curvaton



I The final value of perturbations depends roughly on two
factors:

1. the initial amplitude of the perturbations, H∗/σ∗
2. the efficiency of converting the curvaton perturbations to

curvature perturbations

I First order approximation for the efficiency factor is the energy
fraction in curvaton during the decay,

rdecay ≡
ρσ

ρr + ρσ
|decay .

I There are five free parameters m, n, Γ, λ and M and two
initial conditions H∗ and r∗.

I The equations of motion for the system are

σ̈ + (3H + Γ)σ̇ + m2σ + (n + 4)σn+3 = 0

ρ̇r = −4Hρr + Γσ̇2

3H2 = ρr + ρσ



Few words on numerics

I Only n = 0-case is solvable analytically, so the EOMs need to
be solved numerically.

I Instead of calculating the evolution of σ and δσ separately,
use the ∆N -formalism which is more suited to numerics.

I Time is unphysical. Always compare quantities not with fixed
time, but with fixed H.

I Solving the full EOM’s becomes increasingly slow as the
curvaton oscillates faster and faster in the quadratic regime.
Hence one has to revert to approximate EOM’s for ρσ at some
point.



Qualitative behaviour of the solutions

I A field oscillating in a monomial potential V ∝ σn+4 scales as

ρσ ∝ a−6
n+4
n+6 .

However if n > 6, there are no oscillating solutions.
I The evolution of the curvaton hence should have four distinct

phases:

1. Slow-roll, σ ∼ σ∗.
2. Non-quadratic regime, ρσ ∝ a−6 n+4

n+6 .
3. Quadratic regime, ρσ ∝ a−3.
4. Decay when H ∼ Γ.


