

Standard paradigm: single-field inflation $+(p)$ reheating single fluid dominated FLRW Universe

FLRW metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

Matter component: perfect fluid

$$
\begin{aligned}
& T_{\mu \nu}=p g_{\mu \nu}+(\rho+p) u_{\mu} u_{\nu} \\
& p=\omega \rho
\end{aligned}\left\{\begin{array}{lc}
\omega=\frac{1}{3} & \text { radiation } \\
\omega=0 & \text { dust } \\
\omega=-1 & \text { cosmological constant }
\end{array}\right.
$$

+ cosmological constant $=$ Einstein equation

$$
\begin{aligned}
H^{2} & +\frac{\mathcal{K}}{a^{2}}=\frac{1}{3}\left(8 \pi G_{\mathrm{N}} \rho+\Lambda\right) \\
\frac{\ddot{a}}{a} & =\frac{1}{3}\left[\Lambda-4 \pi G_{\mathrm{N}}(\rho+p)\right]
\end{aligned}
$$

More complicated models: hybrid (GUT), vector modes, ... anisotropic (locally or globally)

Bianchi I metric:

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\underbrace{a^{2}(t)\left[\mathrm{e}^{2 \beta_{x}(t)} \mathrm{d} x^{2}+\mathrm{e}^{2 \beta_{y}(t)} \mathrm{d} y^{2}+\mathrm{e}^{2 \beta_{z}(t)}\right.}_{A_{x}^{2}(t)} \mathrm{d} z^{2}]
$$

$$
\sum_{i \in\{x, y, z\}} \beta_{i}=0
$$

Matter: 2 perfect fluids

$$
\text { Master function } \quad \Lambda\left(n_{x y}^{2}\right)
$$

$$
n_{\mathrm{xy}}^{2}=-g_{\mu \nu} n_{\mathrm{x}}^{\mu} n_{\mathrm{y}}^{\nu}
$$

conserved currents

$$
\nabla_{\mu} n_{\mathrm{x}}^{\mu}=0
$$

Generalized pressure $\Psi=\Lambda+\sum_{\mathrm{x}, \mathrm{y}} \frac{\partial \Lambda}{\partial n_{\mathrm{xy}}^{2}} n_{\mathrm{xy}}^{2}$

Stress energy tensor

$$
{T_{\nu}^{\mu}}_{\nu}=\Psi^{\mu}{ }_{\nu}^{\mu}+\frac{\partial \Lambda}{\partial n_{\mathrm{xy}}^{2}} n_{\mathrm{x}}^{\mu} n_{\mathrm{y} \nu}=\sum_{\mathrm{x}}\left[P_{\mathrm{x}} \delta^{\mu}{ }_{\nu}+\left(\rho_{\mathrm{x}}+P_{\mathrm{x}}\right) u_{\mathrm{x}}^{\mu} u_{\mathrm{x} \nu}\right]
$$

Vorticity $\quad \omega_{\mu \nu}^{\mathrm{x}}=2 \nabla_{[\mu}\left(\frac{\partial \Lambda}{\partial n_{\mathrm{xy}}^{2}} n_{\mathrm{y} \nu]}\right)$

Integrability condition (geometric) $n_{\mathrm{x}}^{\mu} \omega_{\mu \nu}^{\mathrm{x}}=0$

A simple example: the radiation/matter transition

Fluids: massive particles, number density n - entropy s

Master function

Shear from the metric $\quad \sigma_{i}=\dot{\beta}_{i} \mathrm{e}^{2 \beta_{i}}$

Initial condition $=$ radiation dominated $F L R W$
$\rho_{\mathrm{rad}} \gg \rho_{\text {mat }}$
$\beta_{i}(t)=C_{i}^{\text {in }} \quad \forall i$
$\sigma_{i}(t) \rightarrow 0$
Initial condition $=$ matter dominated $F L R W$
$\rho_{\text {rad }} \ll \rho_{\text {mat }}$
$\beta_{i}(t)=C_{i}^{\text {out }}$

A simple example: the radiation/matter transition

Fluids: massive particles, number density n - entropy s

Shear from the metric

$$
\sigma_{i}=\dot{\beta}_{i} \mathrm{e}^{2 \beta_{i}}
$$

Initial condition $=$ radiation dominated $F L R W$
$\rho_{\mathrm{rad}} \gg \rho_{\mathrm{mat}}$
$\beta_{i}(t)=C_{i}^{\text {in }} \quad \forall i$
$\sigma_{i}(t) \rightarrow 0$
Initial condition $=$ matter dominated $F L R W$
$\rho_{\mathrm{rad}} \ll \rho_{\mathrm{mat}}$
$\beta_{i}(t)=C_{i}^{\text {out }}$

Background: time dependent quantities

Einstein equations + vorticity + integrability

$$
\begin{aligned}
& \dot{H}_{x}=-H_{x}^{2}+H_{y} H_{z}-4 \pi\left[\mu n\left(1+2 V_{\mathrm{n}}^{2}\right)+\overparen{T s}\left(1+2 V_{\mathrm{s}}^{2}\right)\right] \\
& \dot{H}_{y}=-H_{y}^{2}+H_{x} H_{z}-4 \pi\left[\mu n\left(1+2 V_{\mathrm{n}}^{2}\right)+T s\left(1+2 V_{\mathrm{s}}^{2}\right)\right] \\
& \dot{H}_{z}=-H_{z}^{2}+H_{x} H_{y}-4 \pi(\mu n+T s) \\
& \dot{A}_{\aleph}=H_{\aleph} A_{\aleph}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
1-\frac{c_{\mathrm{n}}^{2} V_{\mathrm{n}}^{2}}{1+V_{\mathrm{n}}^{2}} & -\frac{\mathcal{C}_{\mathrm{ns}} V_{\mathrm{n}}^{2}}{1+V_{\mathrm{n}}^{2}} \\
-\frac{\mathcal{C}_{\mathrm{sn}} V_{\mathrm{s}}^{2}}{1+V_{\mathrm{s}}^{2}} & 1-\frac{c_{\mathrm{s}}^{2} V_{\mathrm{s}}^{2}}{1+V_{\mathrm{s}}^{2}}
\end{array}\right)\binom{\frac{\dot{n}}{n}}{\frac{\dot{s}}{s}}=-\binom{H_{x}+H_{y}+\frac{H_{z}}{1+V_{\mathrm{n}}^{2}}}{H_{x}+H_{y}+\frac{H_{z}}{1+V_{\mathrm{s}}^{2}}}
$$

$$
\begin{aligned}
& c_{\mathrm{x}}^{2} \equiv \frac{\partial \ln \mu^{\mathrm{x}}}{\partial \ln n_{\mathrm{x}}} \\
& \mathcal{C}_{\mathrm{xy}} \equiv \frac{\partial \ln \mu^{\mathrm{x}}}{\partial \ln n_{\mathrm{y}}}
\end{aligned}
$$

Constraint $\quad H_{x} H_{y}+H_{x} H_{z}+H_{y} H_{z}=8 \pi\left(-\Lambda+\mu n V_{\mathrm{n}}^{2}+T s V_{\mathrm{s}}^{2}\right)$

Linear perturbations around the Radiation/Matter background

Perturbative expansion

$$
f(\boldsymbol{x}, t)=f_{\text {back }}(t)+\delta f(z, t)+\cdots
$$

$$
\begin{array}{rlrl}
\delta \Lambda= & -\mu^{\mathrm{x}} \delta n_{\mathrm{x}}-\mu^{\mathrm{y}} \delta n_{\mathrm{y}} \\
\delta \Psi= & n_{\mathrm{x}}^{2} \delta \mathcal{B}^{\mathrm{x}}+n_{\mathrm{y}}^{2} \delta \mathcal{B}^{\mathrm{y}}-n_{\mathrm{x}} u_{\mathrm{x}}^{t} \mu_{t}^{\mathrm{x}} & \left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{t}}\right)-n_{\mathrm{x}} u_{\mathrm{x}}^{z} \mu_{z}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{z}}{u_{\mathrm{x}}^{z}}+\frac{\delta A_{z}}{A_{z}}\right) \quad \text { Matter quantities } \quad \frac{\partial \delta \mu_{\mathrm{t}}^{\mathrm{x}}}{\partial z}=\frac{\partial \delta \mu_{z}^{\mathrm{x}}}{\partial t} \\
& -n_{\mathrm{y}} u_{\mathrm{y}}^{t} \mu_{t}^{\mathrm{y}}\left(\frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}+\frac{\delta u_{\mathrm{y}}^{t}}{u_{\mathrm{y}}^{t}}\right)-n_{\mathrm{y}} u_{\mathrm{y}}^{z} \mu_{z}^{\mathrm{y}}\left(\frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}+\frac{\delta u_{\mathrm{y}}^{z}}{u_{\mathrm{y}}^{z}}+\frac{\delta A_{z}}{A_{z}}\right) \quad \text {. } \\
\delta \mu_{t}^{\mathrm{x}}= & \mu_{t}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{\mathrm{x}}}+\frac{\delta \mathcal{B}^{\mathrm{x}}}{\mathcal{B}^{\mathrm{x}}}\right) & \\
\delta \mu_{z}^{\mathrm{x}}= & \mu_{z}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{z}}{u_{\mathrm{x}}^{\mathrm{z}}}+\frac{\delta \mathcal{B}^{\mathrm{x}}}{\mathcal{B}^{\mathrm{x}}}+2 \frac{\delta A_{z}}{A_{z}}\right) \quad & \delta T^{t}{ }_{t}=\delta \Psi+n_{\mathrm{x}} u_{\mathrm{x}}^{t} \mu_{t}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{t}}+\frac{\delta \mu_{t}^{\mathrm{x}}}{\mu_{t}^{\mathrm{x}}}\right)+n_{\mathrm{y}} u_{\mathrm{y}}^{t} \mu_{t}^{\mathrm{y}}\left(\frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}+\frac{\delta u_{\mathrm{y}}^{t}}{u_{\mathrm{y}}^{t}}+\frac{\delta \mu_{t}^{\mathrm{y}}}{\mu_{t}^{\mathrm{y}}}\right) \\
\delta \mathcal{B}^{\mathrm{x}}= & \mathcal{B}^{\mathrm{x}}\left[\left(c_{\mathrm{x}}^{2}-1\right) \frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\mathcal{C}_{\mathrm{xy}} \frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}\right] \quad \delta T^{x}{ }_{x}=\delta T^{y}{ }_{y}=\delta \Psi
\end{array}
$$

$$
\delta T^{z}{ }_{t}=n_{\mathrm{x}} u_{\mathrm{x}}^{z} \mu_{t}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{z}}{u_{\mathrm{x}}^{z}}+\frac{\delta \mu_{t}^{\mathrm{x}}}{\mu_{t}^{\mathrm{x}}}\right)+n_{\mathrm{y}} u_{\mathrm{y}}^{z} \mu_{t}^{\mathrm{y}}\left(\frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}+\frac{\delta u_{\mathrm{y}}^{z}}{u_{\mathrm{y}}^{z}}+\frac{\delta \mu_{t}^{\mathrm{y}}}{\mu_{t}^{\mathrm{y}}}\right)
$$

Stress energy tensor

$$
\delta T^{z}{ }_{z}=\delta \Psi+n_{\mathrm{x}} u_{\mathrm{x}}^{z} \mu_{z}^{\mathrm{x}}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{z}}{u_{\mathrm{x}}^{z}}+\frac{\delta \mu_{z}^{\mathrm{x}}}{\mu_{z}^{\mathrm{x}}}\right)+n_{\mathrm{y}} u_{\mathrm{y}}^{z} \mu_{z}^{\mathrm{y}}\left(\frac{\delta n_{\mathrm{y}}}{n_{\mathrm{y}}}+\frac{\delta u_{\mathrm{y}}^{z}}{u_{\mathrm{y}}^{z}}+\frac{\delta \mu_{z}^{\mathrm{y}}}{\mu_{z}^{\mathrm{y}}}\right)
$$

Geometric quantities

$$
\begin{aligned}
\delta G_{t}^{t} & =-2\left(H+H_{z}\right) \delta H-2 H \delta H_{z}+\frac{2}{A_{z}^{2}} \delta I^{\prime} \\
\delta G^{x}{ }_{x} & =\delta G^{y}{ }_{y}=-\delta \dot{H}-\delta \dot{H}_{z}-\left(2 H+H_{z}\right) \delta H-\left(H+2 H_{z}\right) \delta H_{z}+\frac{1}{A_{z}^{2}} \delta I^{\prime} \\
\delta G^{z}{ }_{t} & =-\frac{2}{A_{z}^{2}}\left[\delta \dot{I}+\left(H-H_{z}\right) \delta I\right] \\
\delta G_{z}^{z} & =-2(\delta \dot{H}+3 H \delta H)
\end{aligned}
$$

$$
\delta H=\frac{\delta \dot{A}}{A}-H \frac{\delta A}{A}
$$

Plane wave analysis

$$
\delta n_{\mathrm{x}}=\mathcal{N}_{\mathrm{x}} e^{i k_{\mu} x^{\mu}} \quad \delta u_{\mathrm{x}}^{\mu}=A_{\mathrm{x}}^{\mu} e^{i k_{\nu} x^{\nu}}
$$

$$
\begin{aligned}
& 0=-i k_{z} \mathcal{B}^{\mathrm{x}} n_{\mathrm{x}} u_{\mathrm{x}}^{t}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{t}}+\frac{\delta \mathcal{B}^{\mathrm{x}}}{\mathcal{B}^{\mathrm{x}}}\right)+i k_{t} \mathcal{B}^{\mathrm{x}} n_{\mathrm{x}} u_{\mathrm{x}}^{t}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{t}}+\frac{\delta \mathcal{B}^{\mathrm{x}}}{\mathcal{B}^{\mathrm{x}}}\right) \\
& 0=i k_{t} u_{\mathrm{x}}^{t}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{t}}{u_{\mathrm{x}}^{t}}\right)+i k_{z} u_{\mathrm{x}}^{z}\left(\frac{\delta n_{\mathrm{x}}}{n_{\mathrm{x}}}+\frac{\delta u_{\mathrm{x}}^{z}}{u_{\mathrm{x}}^{z}}\right)
\end{aligned}
$$

Matrix equation

Vanishing determinant \leadsto quartic equation

$$
\begin{aligned}
& {\left[\left(u_{\mathrm{x}} \sigma_{z}-1\right)^{2} c_{\mathrm{x}}^{2}-\left(\sigma_{z}-u_{\mathrm{x}}\right)^{2}\right]\left[\left(u_{\mathrm{y}} \sigma_{z}-1\right)^{2} c_{\mathrm{y}}^{2}-\left(\sigma_{z}-u_{\mathrm{y}}\right)^{2}\right]-\mathcal{C}_{\mathrm{xy}} \mathcal{C}_{\mathrm{yx}}\left(u_{\mathrm{x}} \sigma_{z}-1\right)^{2}\left(u_{\mathrm{y}} \sigma_{z}-1\right)^{2}=0} \\
& \underbrace{}_{\neq} \sigma_{z}=-A_{z} k_{t} / k_{z} \\
& A_{\mathrm{x}}^{z} / u_{\mathrm{x}}^{t}
\end{aligned}
$$

$$
k \equiv k_{z} \in \mathbb{R} \quad \& \quad \omega \equiv k_{t} \quad \square \quad P_{4}(\omega)=\omega^{4}+\#_{3} \omega^{3}+\#_{2} \omega^{2}+\#_{1} \omega+\#_{0}=0
$$

Complex solution Unstable mode

$$
\frac{\delta \rho}{\rho} \propto \mathrm{e}^{\Im \mathrm{m}(\omega) t} \quad \text { can grow non linear very rapidely }
$$

Possible observational consequences

Start non linear growth of structure earlier and faster

Priviledged spatial direction in matter structures

> correlation functions low CMB multipoles $\frac{\delta \alpha}{\alpha}$

Magnetic fields ...

Constraints

Work in progress, any idea welcome!

Thank you！
ありがとう！

