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Introduction
Type Ia supernova (SNIa) observations imply an acceleration of the 
cosmic expansion if we assume the Cosmological Principle. If we 
abandon this assumption, then other explanations become possible. 
The most interesting model of such a nature is the local void model, 
which was first proposed by Kenji Tomita in 2000. This model 
assumes that we are around the center of a low density spherically 
symmetric void and the spacetime is well described by the Lemaitre-
Tolman-Bondi (LTB) model. 
     It is of crucial importance to find observational tests that enable 
us to discriminate this void model from the FLRW-based models, in 
order to establish the necessity of dark energy or a modification of 
gravity. One possible such test is to observe effects of the 
inhomogeneity on the cosmic microwave background (CMB) 
temperature and polarization.
     In the present work, we calculate the gravitational lensing effect 
on the CMB polarization for an off-center observer in the local void 
model. As a result, we discover that the B-mode and the EB 
correlation are generated. With these remarkable observables, we 
are able to verify or falsify this model by future CMB experiments.
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CMB polarization in the LTB model

→ Solve the linear perturbation equation obtained 
from the above ODEs
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Solve Boltzmann eq.→ initial condition at the last scattering surface
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LTB spacetime

We work in the synchronous gauge:
g0ij      approaches a spatially homogeneous and isotropic metric      in 
the early universe → 
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We can set             for an appropriate choice of the polarization basis~C = 111
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Appendix: polarization distribution patterns
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Propagation after the last scattering

±µobs = D¡ sin µobs
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CMB polarization distribution (“obs” omitted)

Summary and Outlook
In this work, we developed a formulation to 
calculate the gravitational lensing effect on 
the CMB temperature and polarization for an 
off-center observer in a spherically symmetric 
void described by the LTB model. Next, we 
are going to numerically estimate this effect. 
In future, we will limit the distance from us to 
the center by the results of B-mode 
observations.

power spectra from primordial fluctuations:

If physics and the ensemble for averaging 
are invariant under a parity inversion,

             is expanded with spin-weighted 
spherical harmonics:
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Resulting B-mode formula
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