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Introduction

A major science goal of galaxy redshift surveys

Characteristic scale of BAO as a standard ruler
to trace cosmic expansion history

nature of dark energy

Reducing systematics is a big issue :

Precise measurement of Baryon Acoustic Oscillations
(BAOs)

• non-linear evolution
• redshift distortion
• galaxy bias

{

Aim of this 
talk
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Methodology

Reconstructing

Forward modeling

Fitting

There are several techniques to reduce systematics
 (still on-going subjects)

Perturbation theory (PT) based modeling of BAOs

Sophisticated parametric formula and/or hybrid fitting

Degradation of acoustic features by Zel’dovich approx.

Seo et al. (‘08, ‘09); Padmanabhan & White (‘09)

Eisenstein et al. (’07); Huff et al. (’07); Padmanabhan et al. (’09)

Crocce & Scoccimarro (’08); Jeong & Komatsu (’06,’09); 
Matsubara (‘08a,b); AT & Hiramatsu (’08); AT et al. (’09); etc. ...
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Development of new analytic method
AT, Nishimichi, Saito & 

Hiramatsu (2009)

AT & Hiramatsu (2008)

Correlation function

Limitation of 
standard PT

An improved treatment of perturbation theory (PT) 
to deal with non-linear gravitational evolution

Power spectrum
z=3
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Development of new analytic method
AT & Hiramatsu (2008)

Correlation function

Limitation of 
standard PT

An improved treatment of perturbation theory (PT) 
to deal with non-linear gravitational evolution

Power spectrum
z=3

further investigation on modeling BAOs
Based on improved PT of non-linear structure growth,

k||
k⊥

From 1D to 2D

This talk

real space

Key 
word

redshift space

AT, Nishimichi, Saito & 
Hiramatsu (2009)
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Alcock-Paczynski (AP) effect

H(z) & DA(z) 

majority of recent works focuses on angle-averaged 1D BAOs
only constrain the combination,

Different distance measurements between parallel & 
transverse directions cause apparent anisotropies in P(k) 

Using BAO as standard ruler,

DA(z)2/H(z)

strong constraints on 
dark energy E.O.S

Note

can be determined simultaneously

observer 

∆r⊥ = DA(z)∆ θ

∆r|| = c∆ z/H(z)
e.g., Seo & Eisenstein (’03); Hu & Haiman (’03); 

Blake & Glazebrook (’03); Shoji et al.(’09)
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Gravity test
In modeling 2D, redshift distortion effect is inevitable,
 it provides a way to test gravity on cosmological scales 

strength of redshift distortion
On linear regime,

∝ f(z) ≡ d lnD+

d ln a
growth-rate parameter :

D+(z) : linear growth rate

f(z) � {Ωm(z)}γ

In general relativity,
γ = 0.55

Deviation of γ from 0.55 implies a breakdown of GR 
on cosmological scales

;

but

e.g., Linder (’05)

Kaiser (’87)
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Redshift distortion

real spaceredshift space
v :
ẑ :{ peculiar velocity

observer’s 
line-of-sight direction

�s = �r +
(�v · ẑ)
aH(z)

ẑ ;

• Anisotropy (2D power spectrum)
P (k) ; µ ≡ (�k · ẑ)/|�k|

Enhancement
Suppression

• Power spectrum amplitude

Kaiser effect
Finger-of-God effect

(small-k)

(large-k)

Observed clustering pattern is apparently distorted.

P (S)(k, µ)

Definition
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Power spectrum in redshift space

P (S)(k) =
�

d3x eik·x
�
e−ikµ ∆uz {δ(r)−∇zuz(r)} {δ(r�)−∇zuz(r�)}

�

uz = (�v · ẑ)/(aH)
∆uz = uz(r)− uz(r�)

Exact expression x = r− r�

... physical, but still empirical formula

(Popular) analytic model e.g., Scoccimarro (2004)

fitting parameter

Finger of God (non-linear) Kaiser 

P (S)(k, µ) = e−(kµ σv)2
�
Pδδ(k)− 2 µ2 Pδθ(k) + µ4 Pθθ(k)

�

1D velocity 
dispersion
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Missing terms, found
From low-k expansion of the exact formula for ,P (S)(k, µ)

�
θ(k1)

�
δ(k2)− µ2

2 θ(k2)
� �

δ(k3)− µ2
3 θ(k3)

��
= (2π)3δD(k123) Bσ(k1,k2,k3)

Non-Gaussian 
correction A(k, µ) = −2 k µ

�
d3p

(2π)3
pz

p2
Bσ(p,k− p,−k)

Gaussian 
correction 

+A(k, µ) + B(k, µ)
�

Leading-order corrections to the mode-coupling btw velocity & density

antiphase 
oscillation

small in amplitude 
(<1-2%)

These also 
depend on ‘f’

P (S)(k, µ) = e−(kµfσv)2
�
Pδδ(k)− 2fµ2Pδθ(k) + f2µ4Pθθ(k)

B(k, µ) = (kµ)2
�

d3p

(2π)3
F (p)F (k − p)

F (p) ≡ pz

p2

�
Pδθ(p)− p2

z

p2
Pθθ(p)

�
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Results including corrections
P (S)

� (k)/P (S)
�,no-wiggle(k) fractional residuals

Monopole

Quadrupole

z=3

z=3

z=1

z=1

Non-linear 
Kaiser + Gaussian

Non-linear 
Kaiser + Gaussian

with missing terms

with missing terms

Missing terms added

Missing terms added

z=1

z=1

z=3

z=3

Monopole

Quadrupole

cosmic variance error 
for V=1(Gpc/h)^3

cosmic variance error 
for V=4(Gpc/h)^3

テキスト

prediction including 
new corrections

1% convergence limit of N-body 
& improved PT in real space
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Results including corrections
P (S)

� (k)/P (S)
�,no-wiggle(k) fractional residuals

Monopole

Quadrupole

z=3

z=3

z=1

z=1

neglecting 
corrections

neglecting 
corrections

z=1

z=1

z=3

z=3

Monopole

Quadrupole

cosmic variance error 
for V=1(Gpc/h)^3

cosmic variance error 
for V=4(Gpc/h)^3

テキスト

prediction including 
new corrections

1% convergence limit of N-body 
& improved PT in real space
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Check: recovery of DA, H & f

Fitting to P0 & P2 of N-body data,
 (DA, H, f) are estimated

New model 
correctly recovers 
the input values

11

effect through (e.g., [18, 52, 53])

q = k

[(
DA,fid

DA

)2

+

{(
H

Hfid

)
−

(
DA,fid

DA

)2
}

µ2

]1/2

,

(26)

ν =
(

H

Hfid

)
µ

×
[(

DA,fid

DA

)2

+

{(
H

Hfid

)
−

(
DA,fid

DA

)2
}

µ2

]−1/2

,

(27)

The quantities DA,fid and Hfid are the fiducial values
of the angular diameter distance and Hubble parameter
adopted in the N-body simulations. For a given set of
cosmological parameters, the redshift-space power spec-
trum P (S) is calculated from Eq. (18), but we here treat
the quantity f as free parameter in addition to the ve-
locity dispersion σv. Further, to mimic a practical data
analysis using galaxy power spectrum, we introduce the
bias parameter b, assuming the linear deterministic rela-
tion, i.e., δsim = b δm [69]. Then, fitting the monopole
and quadrupole power spectra of Eq. (25) to those of the
N-body simulation at z = 1, we determine the best-fit
values of DA, H and f , just marginalized over the pa-
rameters σv and b. To do this, we use the Markov chain
Monte Carlo (MCMC) technique described by Ref. [55],
and adopt the likelihood function given by

− 2 lnL =
∑

n

∑

!,!′=0,2

{
P (S)

!,sim(kn) − P (S)
!,model(kn)

}

× Cov−1
!,!′(kn)

{
P (S)

!′,sim(kn) − P (S)
!′,model(kn)

}
,

(28)

where the quantity Cov!,!′ represents the covariance ma-
trix between different multipoles. The range of wavenum-
ber used in the likelihood analysis was chosen as k ≤
kmax = 0.205hMpc−1, so as to satisfy kmax ≤ k1%. As
for the covariance, we simply ignore the non-Gaussian
contribution (see Ref. [56] for validity of this treatment),
and use the linear theory to estimate the diagonal com-
ponents of the covariance, Cov!,!′ , including the effect of
shot-noise contribution assuming the galaxy number den-
sity ng = 5 × 10−4h3Mpc−3. The explicit expression for
the covariance is presented in Appendix C. We checked
that the linear theory estimate reasonably reproduces the
N-body results of the covariance matrix for the range of
our interest k ! 0.3hMpc−1 at z = 1.

Fig. 9 summarizes the result of the MCMC analy-
sis assuming an idealistically large survey with Vs =
20h−3Gpc3. The two-dimensional contour of the 1-σ
marginalized errors are shown for DA/DA,fid vs H/Hfid

(bottom left), DA/DA,fid vs f (middle left), and f vs
DA/DA,fid (bottom center). Also, the marginalized pos-
terior distribution for each parameter are plotted in the
top left, middle center, and bottom right panels. In each
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FIG. 9: Results of MCMC analysis using the model of red-
shift distortion with and without corrections (depicted as blue
and red lines, respectively). Based on the power spectrum
template (25), we derive the posterior distribution for the pa-
rameters DA, H and f from the monopole and quadrupole
spectra of N-body simulations at z = 1, marginalized over
the one-dimensional velocity dispersion σv and linear bias pa-
rameter b. Top left, middle center and bottom right show
the marginalized posterior distribution for DA/DA,fid, H/Hfid

and f . Shaded regions indicate the 1% interval around
the fiducial values. Middle left, bottom left, and bottom
center plot the two-dimensional 1-σ errors on the surfaces
(H/Hfid, f), (DA/DA,fid, H/Hfid), and (f, H/Hfid). Note that
in estimating likelihood function (28), we adopted the lin-
ear theory to calculate the covariance matrix Cov!,!′ , includ-
ing the shot-noise contribution with ng = 5 × 10−4h3Mpc−3

and assuming an idealistically large survey volume Vs =
20h−3Gpc3 (see Appendix C for explicit expression).

panel, blue and red lines respectively represent the results
using the model of redshift distortion with and without
the terms A and B.

As it is clear from Fig. 9, the model including the cor-
rections shows a better performance. Within the 1-σ
errors, which roughly correspond to the precision of a
percent-level, it correctly reproduces the fiducial values
of the parameters (indicated by crosses). On the other
hand, the two-dimensional errors of the results neglecting
the corrections show a clear evidence for the systematic
bias on the best-fit parameters. Accordingly, the resul-
tant value of χ2 around the best-fit parameters, given by
χ2 = −2 lnL, is larger than that of the case including the
corrections: χ2 = 10.1 and 22.2 for the cases with and
without corrections, respectively. Although the deviation
from the fiducial values seems somewhat small except for
the growth-rate parameter f , this is solely due to the fact
that we only use the monopole and quadrupole power
spectra. It would be generally significant in the analy-
sis using the full shape of redshift-space power spectrum,

Fiducial
New model of redshift distortion
Phenomenological model 

(w/o corrections)

 using MCMC
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Impacts on future observations

New model 
of redshift distortion

Phenomenological model
(w/o corrections)

• DA, H：1~2 %

• f ：~5 %

Systematic biases:

13

FIG. 10: Expected two-dimensional contours on marginalized errors around the best-fit values of DA/DA,fid vs H/Hfid (bottom
left), f vs H/Hfid (bottom right) and DA/DA,fid vs f (top left) at z = 1, obtained from the full shape of redshift-space power
spectrum. The maximum wavenumber for parameter estimation is chosen as kmax = 0.12 (left) and 0.2hMpc−1 (right), so as
to satisfy the condition kmax < k1% for standard PT and improved PT, respectively. In each panel, open and shaded contours
indicate the two dimensional errors for the surveys with Vs = 4 and 20h−3Gpc3.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the power spec-
trum in redshift space, and presented a new model of red-
shift distortion, which is particularly suited for modeling
anisotropic BAOs around k = 0 ∼ 0.3hMpc−1. Contrary
to the previous phenomenological modes in which the ef-
fects of Kaiser and Finger-of-God are separately treated
in a multiplicative way, the new model includes the cor-
rections coming from the non-linear coupling between ve-
locity and density fields, which give rise to a slight up-
lift in the amplitude of monopole and quadrupole power
spectra. The model predictions can give a good agree-
ment with results of N-body simulations, and a percent
level precision is almost achieved.

Based on the new model of redshift distortion, we pro-
ceeded to the parameter estimation analysis, and checked
if the theoretical prediction correctly recovers the cosmo-
logical information from the monopole and quadrupole
spectra of N-body simulations. MCMC analysis revealed
that while the new model of redshift distortion combin-
ing the improved PT calculation faithfully reproduces the
fiducial parameters DA, H and f and the precision can
reach at a percent level, the model neglecting the correc-
tions (A and B terms) exhibits a slight offset of the best-
fit values. In order to estimate the potential impact on
the future measurement, we have further made the Fisher
matrix analysis using the full shape of power spectrum
P (S)(k, µ), and found that the existing phenomenological
models of redshift distortion neglecting the corrections

produce a systematic error on measurements of the angu-
lar diameter distance and Hubble parameter by 1 ∼ 2%,
and the growth rate parameter by ∼ 5%. This would
become non-negligible for stage-III and -IV class surveys
defined by the Dark Energy Task Force. Correctly mod-
eling redshift distortion is thus crucial, and the new pre-
scription of redshift-space power spectrum presented here
plays an essential role in constraining the dark energy
and/or modified gravity from anisotropic BAOs.

Finally, we note several remaining tasks in practical ap-
plication to the precision measurement of BAOs. One is
the improved treatment for calculation of the corrections,
A and B terms, which needs to evaluate the bispectrum
of density and velocity fields. In doing this, a system-
atic treatment using multi-point propagator developed
by Ref. [59] would be useful and indispensable. Also, the
effects of the new contributions to the redshift-space clus-
tering in the presence of the primordial non-Gaussianity
and the dark sector interaction would be presumably im-
portant (e.g., [10, 60, 61]), and should deserve further
investigation. Of course, the biggest issue is the galaxy
biasing. Recent numerical and analytical studies claim
that the scale-dependent and stochastic properties of the
galaxy bias can change the redshift-space power spec-
trum, and the potential impact on the determination of
the growth-rate parameter would be significant [62, 63].
A realistic modeling of galaxy biasing relevant for the
scale of BAOs is thus essential, and a further improve-
ment of the power spectrum template needs to be devel-
oped.

cannot be negligible even 
for stage III-class surveys

Fisher matrix analysis using full 2D information

Assumptions

ng = 5× 10−4h3Mpc−3

z = 1, linear bias (b = 2),
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Summary
Modeling BAOs in 2D taking account of the effects of 

both non-linear clustering & redshift distortion
A new model of redshift distortion
Fisher-matrix analysis on systematic bias

• Systematic bias caused by incorrect model assumption of 
redshift distortion would produce

: small, but non-negligible (1~2%)

• With improved PT, a (sub-)percent precision is achieved for 
predictions, and the model can correctly recover DA, H & f

: significant (~5%)
crucial for stage III surveys

{ f(z)

DA(z) &H(z)
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Appendix
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Modeling non-linear P(k)

would be very useful complementary to N-body simulations 

Perturbative expansion of (CDM+baryon) system described as 
 pressureless fluid: 

Density fluctuation Power spectrum

!! Standard PT

!! Improved perturbation theory

Jeong & Komatsu (2006)

Crocce & 
Scoccimarro (2008)

AT & Hiramatsu (2008)
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Standard PT vs. Improved PT

Improved PT（CLA） 

Standard PT 

1-loop 2-loop

Non-perturbative effects is incorporated through propagator

Iteratively evaluate mode-coupling term by Born approximation

Initial P(k)

Linear (tree)

Straightforward calculation based on naïve expansion

Mode-coupling termpropagator

19



Convergence of PT expansions

All contributions become 
comparable at low-z, positivity is 

not guaranteed 

Contributions are all positive,  
shifted to higher k as 
increasing order of PT

 Improved 
PT （CLA） 

 Standard 
PT

1st Born

2nd Born

1-loop

2-loop

positive

positive
positive

negative
negative

Linear P(k) Linear P(k)

20



Phenomenological models

Peacock & Dodds (’94); Cole et al.(’95); 
Ballinger et al. (’96); Magira et al. (’00)

Scoccimarro (’04); Percival & White (’09);
Shoji et al. (’09)

Damping func. Non-linear Kaiser 

Linear Kaiser 

Lorentzian

Gaussian{

; f ≡ d lnD+/d ln a

fitting parameter
(1D velocity dispersion)

Damping func.

Damping func. 

P (S)(k, µ) = D[kµfσv]
�
Pδδ(k)− 2f µ2Pδv(k) + f2µ4Pvv(k)

�

D[x ] =
1/(1 + x2)
exp{−x2}

Finger-of-God 
effect

P (S)(k, µ) = D[kµf σv] (1 + f µ2)2 Pδδ(k)

21



Comparison with N-body simulation

Monopole

Quadrupole

Linear Kaiser + Gaussian
Non-linear Kaiser + Gaussian
Non-linear Kaiser + Lorentzian

P (S)(k, µ) =
�

�=even

P (S)
� (k)P�(µ)

P
(S

)
0

(k
)/

P
(S

)
0
,n

o
-w

ig
g
le
(k

)
P

(S
)

2
(k

)/
P

(S
)

2
,n

o
-w

ig
g
le
(k

)

1% convergence limit of N-body 
& improved PT in real space

Linear

Linear
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4

FIG. 1: Ratio of power spectra to smoothed reference spectra in redshift space, P (S)
! (k)/P (S)

!,no-wiggle(k). N-body results are taken

from the wmap5 simulations of Ref. [34]. The reference spectrum P (S)
!,no-wiggle is calculated from the no-wiggle approximation of

the linear transfer function, and the linear theory of the Kaiser effect is taken into account. Short dashed and dot-dashed lines
respectively indicate the results of one-loop PT and Lagrangian PT calculations for redshift-space power spectrum (Eqs. (5)
and (6)).

FIG. 2: Same as in Fig. 1, but we here plot the results of phenomenological model predictions. The three different predictions
depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms (Eqs.(10) and (11)). Left panel shows the monopole power spectra (! = 0), and
the right panel shows the quadrupole spectra (! = 2). In all cases, one-dimensional velocity dispersion σv was determined by
fitting the predictions to the N-body simulations. In each panel, vertical arrow indicates the maximum wavenumber k1% for
improved PT prediction including up to the second-order Born approximation (see Eq. (12) for definition).
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depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms (Eqs.(10) and (11)). Left panel shows the monopole power spectra (! = 0), and
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FIG. 5: Same as in Fig. 2, but we here adopt new model of redshift distortion (18). Solid and dashed lines represent the
predictions for which the spectra Pδδ, Pδθ and Pθθ are obtained from the improved PT including the correction up to the
second-order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and
B given in Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the
maximum wavenumber k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

can be formally recast as

P (S)
SPT(k, µ) =

{
1 − (kµfσv,lin)2

} {
Pδδ(k) + 2f µ2Pδθ(k)

+f2µ4Pθθ(k)
}

+ A(k, µ) + B(k, µ) + C(k, µ). (23)

Note that each term in the above expression should be
consistently evaluated using the perturbative solutions
up to the third order in δ and θ, and as a result, only
the leading-order corrections just proportional to Plin∆2

(or equivalently the forth order in δ(1)) are included in
the one-loop power spectrum. Here, the function C is
defined by

C(k, µ) = (kµ f)2
∫

d3pd3q

(2π)3
δD(k − p − q)

µ2
p

p2
Pθθ(p)

×
{
Pδδ(q) + 2 f µ2

q Pδθ(q) + f2 µ4
q Pθθ(q)

}

# (kµ f)2
∫

d3pd3q

(2π)3
δD(k − p − q)

µ2
p

p2

(
1 + f µ2

q

)2

× Plin(p)Plin(q) (24)

with µp = pz/|p| and µq = qz/|q|. The second equality is
valid for the one-loop PT calculation. Hence, if we adopt
either of Lorentzian or Gaussian form in Eq. (11) and just
expand it in powers of its argument, the new formula (18)
reduces to the one-loop result (23) just dropping the term
C.

The C term is originated from the spatial correlation
of the velocity field, and is obtained through the low-k

expansion of the exponential prefactor exp{〈ej1A1〉c} in
Eq. (16). For the scales of BAOs, the C term monoton-
ically increases the amplitude of power spectrum, and
it does not alter the acoustic structure drastically. In-
deed, our several examinations reveal that the effect of
this can be effectively absorbed into the damping func-
tion D[kµfσv] with varying the velocity dispersion σv.
Rather, the main drawback of the standard PT expres-
sion (23) comes from a naive expansion of all the terms
in the exact formula (4), which fails to describe the del-
icate balance between the Finger-of-God damping and
the enhancement from Kaiser effect and non-linear grav-
itational growth. As we will see in next subsection, both
keeping the damping term DFoG and including the cor-
rections A and B seem essential, and with this treatment,
even the standard PT calculation of the power spectrum
can give a excellent result which reproduces the N-body
simulations fairly well.

B. Comparison with N-body simulations

We now compare the new prediction of redshift-space
power spectra with the result of N-body simulations.
Fig. 5 shows the monopole (left) and quadrupole (right)
power spectra divided by their smooth reference spectra.
The analytical predictions based on the model (18) are
plotted adopting the Gaussian form of the Finger-of-God
term DFoG[kfµσv], and the velocity dispersion σv is de-
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FIG. 6: Contribution of each term in redshift-space power
spectrum. For monopole (! = 0, left) and quadrupole
(! = 2, right) spectra of the improved model prediction at
z = 1 shown in solid lines of Fig. 5, we divide the to-
tal power spectrum P (S)

total (solid) into the three pieces as

P (S)
total = P (S)

Kaiser + P (S)
corr,A + P (S)

corr,B, and each contribution is
separately plotted dividing by smoothed reference spectra,
P (S)

!,no-wiggle. Here, the spectrum P (S)
Kaiser (dotted) is the con-

tribution of non-linear Kaiser term (10) convolved with the

Finger-of-God damping DFoG, and the corrections P (S)
corr,A and

P (S)
corr,B are those given by Eq. (22).

termined by fitting the predictions to the N-body results.
In computing the predictions, the A and B terms are
calculated from the one-loop standard PT results in Ap-
pendix A, while the spectra Pδδ, Pδθ and Pθθ are obtained
from improved PT in solid lines, and from standard PT
in dashed lines.

Compared to Figs. 1 and 2, the agreement between N-
body simulations and predictions depicted as solid lines
becomes clearly improved, and the prediction includ-
ing the corrections faithfully traces the N-body trends
of acoustic feature, especially around k = 0.05 ∼
0.15hMpc−1, where the phenomenological model shows
a few % level discrepancy. A remarkable point is that a
reasonable agreement basically holds over the range be-
low the critical wavenumber k1% calibrated in real space
(vertical arrows, Eq. (12) for definition). This is also
true for the case adopting one-loop standard PT to com-
pute Pδδ, Pδθ and Pθθ (dashed lines), and the range of
agreement is wider than that of the existing PT-based
models in Sec. III A.

In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction of power spectra P (S)(k) at z = 1 into the
three pieces as P (S)

Kaiser, P (S)
corr,A and P (S)

corr,B, which are
separately plotted as dotted, long-dashed, and short
dashed lines, respectively. The power spectrum P (S)

Kaiser
is the contribution of the non-linear Kaiser term given
in Eq. (10), convolved with the damping function DFoG.
The spectra P (S)

corr,A and P (S)
corr,B represent the actual con-

tributions of the corrections A and B defined by Eq. (22),

FIG. 7: Same as in Fig. 3, but we here adopt new model
of redshift distortion in estimating σv. The filled triangle
and circles are the results obtained from predictions based on
standard PT and improved PT calculations, respectively (see
dashed and solid lines in Fig. 5.

with fitted value of σv. The corrections A and B give
different contributions in the amplitude of monopole
and quadrupole spectra, and their total contribution can
reach ∼ 10% and ∼ 40% for monopole and quadrupole
spectra at k ! 0.2hMpc−1, respectively. Thus, even
though the resultant shape of the total spectrum P (S)(k)
apparently resembles the one obtained from phenomeno-
logical model, the actual contribution of the corrections
A and B would be large and cannot be neglected.

Note, however, that a closer look at low-z behavior re-
veals a slight discrepancy around k ∼ 0.15hMpc−1 and
0.22hMpc−1 in the monopole spectrum. Also, discrep-
ancies in the quadrupole spectrum seems bit large, and
eventually reach ∼ 5% error in some wavenumbers at
z = 0.5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard
PT calculations. It is known that the standard PT result
generically gives rise to a strong damping in the BAOs,
and it incorrectly leads to a phase reversal of the BAOs.
Thus, beyond the validity regime of the standard PT, the
predictions including the small corrections tend to over-
smear the acoustic feature, leading to a small discrepancy
shown in Fig. 5.

Another source for the discrepancies may come from
the effect of finite-mode sampling caused by the finite
boxsize of the N-body simulations. As advocated by
Refs.[25, 54], due to the finite number of Fourier modes,
the matter power spectrum measured from N-body sim-
ulations may not agree well with the predictions of linear
theory nor standard PT even at very large scales, and
tends to systematically deviate from them. While we
follow and extend the procedure of Ref.[25] to correct
this effect in redshift space, it relies on the leading-order
calculations of standard PT, and the correction for finite-

5

FIG. 3: Redshift evolution of velocity dispersion σv deter-
mined by fitting the predictions of monopole and quadrupole
power spectra to the N-body results. While the solid lines rep-
resent the linear theory prediction, the symbols indicate the
results obtained by fitting models of redshift distortion with
various choices of Kaiser and damping terms (see Fig. 2).

tion which mimics the Finger-of-God effect. The quan-
tity σv is the one-dimensional velocity dispersion defined
by σ2

v = 〈u2
z(0)〉. The variety of the functional form for

PKaiser(k, µ) and DFoG[k µ f σv] are summarized as fol-
lows.

The Kaiser effect has been first recognized from the
linear-order calculations [42], from which the enhance-
ment factor (1 + f µ2)2 is obtained (see Eq. (5)). As a
simple description for the Kaiser effect, one may naively
multiply the non-linear matter power spectrum by this
factor, just by hand. Recently, proper account of the
non-linear effect has been discussed [41, 48], and non-
linear model of Kaiser effect has been proposed using the
real-space power spectra. Thus, we have

PKaiser(k, µ)

=






(1 + fµ2)2Pδδ(k) ; linear

Pδδ(k) + 2f µ2 Pδθ(k) + f2 µ4 Pθθ(k) ; non-linear

(10)

Here, the spectra Pδδ, Pθθ, and Pδθ denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence θ
is defined by θ ≡ ∇u = −∇v/(aHf) [68].

On the other hand, the functional form of the damp-
ing term can be basically modeled from the distribution
function of one-dimensional velocity. Historically, it is
characterized by Gaussian or exponential function (e.g.,

[50–53]), which lead to

DFoG[x] =






exp(−x2) ; Gaussian

1/(1 + x2) ; Lorentzian
(11)

Note that there is analogous expression for exponential
distribution, i.e., DFoG[x] = 1/(1+x2/2)2 [49], but the re-
sultant power spectrum is quite similar to the one adopt-
ing the Lorentzian form for the range of our interest,
x ! 1. Since the Finger-of-God effect is thought to be a
fully non-linear effect, which mostly comes from the viri-
alized random motion of the mass (or galaxy) residing at
a halo, the prediction of σv seems rather difficult. Our
primary purpose is to model the shape and structure of
acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus re-
gard σv as a free parameter, and determine it by fitting
the predictions to the simulations or observations.

Fig. 2 compares the phenomenological models of red-
shift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-
space power spectrum from the phenomenological mod-
els, we adopt the improved PT treatment by Refs. [33,
34], and the analytic results including the corrections up
to the second-order Born approximation are used to ob-
tain the three different power spectra Pδδ, Pδθ and Pθθ.
The accuracy of the improved PT treatment has been
checked in details by Refs. [34], and it has been shown
that the predictions of Pδδ reproduce the N-body results
quite well within 1% accuracy below the wavenumber
k1%, indicated by the vertical arrows in Fig. 2. This has
been calibrated from a proper comparison between N-
body and PT results and is empirically characterized by
solving the following equation [25, 34]:

k2
1%

6π2

∫ k1%

0
dq Plin(q; z) = C (12)

with C = 0.7 and Plin being linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction
at z = 3 has reached at k ∼ 0.47hMpc−1, outside the plot
range. We basically use this criterion to determine σv,
and fit the predictions of both monopole and quadrupole
spectra to the N-body results in the range 0 ≤ k ≤ k1%.

Since we allow σv to vary as a free parameter, the
overall behaviors of the model predictions reproduce with
N-body results, and the differences between model pre-
dictions are basically small compared to the results in
the PT description. However, there still exist small but
non-negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the non-linear model
of PKaiser, there still remains discrepancies of few % in
monopole and 5 % in quadrupole moments of power spec-
trum amplitudes. These are irrespective of the choice of
damping function DFoG.
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mode sampling has been restricted to the low-k modes,
k ! 0.1hMpc−1 [34]. Hence, the high-k modes of the
power spectrum plotted here may be affected by the ef-
fect of finite-mode sampling, and it would be significant
for higher-multipole spectrum because of its small am-
plitude. This might be still serious even with the 30
independent data of N-body simulations.

Perhaps, the best way to remedy these discrepancies
at low-z is both to apply the improved PT treatment
to the corrections A and B, and to consider the higher-
order contributions for correcting the effect of finite-mode
sampling over the relevant range of BAOs. The complete
analysis along the line of this need some progress and is
beyond the scope of this paper. Nevertheless, it should
be stressed that the model given by Eq. (18) captures
several important aspects of redshift distortion, and even
the present treatment with standard PT calculations of
the corrections A and B can provide a better description
for power spectra. In Fig. 7, we plot the fitted values
of the velocity dispersion obtained from the new predic-
tions shown in Fig. 5. The redshift dependence of the
fitted results roughly matches physical intuition, and is
rather consistent with the linear theory prediction. This
is contrasted to the cases neglecting the corrections (see
Fig. 3).

As another significance, we plot in Fig. 8 the
quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed) are com-
pared with those neglecting the corrections A and B (dot-
dashed). The amplitude of the ratio P (S)

2 /P (S)
0 basically

reflects the strength of the clustering anisotropies, and is
proportional to (4f/3 + 4f2/7)/(1 + 2f/3 + f2/5) in the
limit k → 0 (e.g., [1, 3, 42]). One noticeable point is that
the N-body results of quadrupole-to-monopole ratio do
exhibit an oscillatory behavior, and the model including
the corrections (18) reproduces the N-body trends fairly
well. On the other hand, the phenomenological model
neglecting the corrections generally predicts the smooth
scale-dependence of the ratio P (S)

2 /P (S)
0 , and thus it fails

to reproduce the oscillatory feature. Since this oscillation
is originated from the acoustic feature in BAOs, Fig. 8
implies that the quadrupole-to-monopole ratio possesses
helpful information not only to constrain the growth-rate
parameter f , but also to determine the acoustic scales. In
other words, any theoretical template for redshift-space
power spectrum neglecting the corrections A and B may
produce a systematic bias in determining the growth-rate
parameter f(z), Hubble parameter H(z) and angular di-
ameter distance DA(z), which we will discuss in details
in next section.

V. IMPLICATIONS

The primary science goal of future galaxy surveys is to
clarify the nature of late-time cosmic acceleration, and
thereby constraining the parameters DA(z), H(z) and

FIG. 8: Quadrupole-to-monopole ratios for redshift-space
power spectrum, P (S)

2 (k)/P (S)
0 (k), given at z = 3, 2, 1, and

0.5 (from top to bottom). Solid and dashed lines respectively
represent the predictions based on new model of redshift dis-
tortion combining improved PT and standard PT calculation
to estimate the three different power spectra Pδδ, Pδθ and Pθθ.
Dot-dashed lines are the results based on the phenomeno-
logical model neglecting the corrections, which correspond to
solid lines in Fig. 2 (i.e., non-linear PKaiser + Gaussian DFoG).
The vertical arrows indicate the maximum wavenumber k1%

for standard PT (left) and improved PT (right).

f(z) through a precise measurement of BAOs in redshift
space would be the most important task. However, these
constraints may be biased if we use the incorrect model
of redshift distortion as theoretical template fitting to
observations. In this section, we explore the potential
impact on the uncertainty and bias in the parameter es-
timation for DA(z), H(z) and f(z).

A. Recovery of parameters DA, H and f

Let us first examine the parameter estimation using
the new model of redshift distortion. Fitting the theo-
retical template of power spectrum to the N-body data,
we will check if the best-fit parameters for DA(z), H(z)
and f(z) can be correctly recovered from the monopole
and quadrupole moments of anisotropic BAOs.

We model the power spectrum of N-body simulations
by

P (S)
model(k, µ) =

H(z)
Hfid(z)

{
DA,fid(z)
DA(z)

}2

P (S)(q, ν), (25)

where the comoving wavenumber k and the directional
cosine µ for the underlying cosmological model are re-
lated to the true ones q and ν by the Alcock-Paczynski
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FIG. 10: Expected two-dimensional contours on marginalized errors around the best-fit values of DA/DA,fid vs H/Hfid (bottom
left), f vs H/Hfid (bottom right) and DA/DA,fid vs f (top left) at z = 1, obtained from the full shape of redshift-space power
spectrum. The maximum wavenumber for parameter estimation is chosen as kmax = 0.12 (left) and 0.2hMpc−1 (right), so as
to satisfy the condition kmax < k1% for standard PT and improved PT, respectively. In each panel, open and shaded contours
indicate the two dimensional errors for the surveys with Vs = 4 and 20h−3Gpc3.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the power spec-
trum in redshift space, and presented a new model of red-
shift distortion, which is particularly suited for modeling
anisotropic BAOs around k = 0 ∼ 0.3hMpc−1. Contrary
to the previous phenomenological modes in which the ef-
fects of Kaiser and Finger-of-God are separately treated
in a multiplicative way, the new model includes the cor-
rections coming from the non-linear coupling between ve-
locity and density fields, which give rise to a slight up-
lift in the amplitude of monopole and quadrupole power
spectra. The model predictions can give a good agree-
ment with results of N-body simulations, and a percent
level precision is almost achieved.

Based on the new model of redshift distortion, we pro-
ceeded to the parameter estimation analysis, and checked
if the theoretical prediction correctly recovers the cosmo-
logical information from the monopole and quadrupole
spectra of N-body simulations. MCMC analysis revealed
that while the new model of redshift distortion combin-
ing the improved PT calculation faithfully reproduces the
fiducial parameters DA, H and f and the precision can
reach at a percent level, the model neglecting the correc-
tions (A and B terms) exhibits a slight offset of the best-
fit values. In order to estimate the potential impact on
the future measurement, we have further made the Fisher
matrix analysis using the full shape of power spectrum
P (S)(k, µ), and found that the existing phenomenological
models of redshift distortion neglecting the corrections

produce a systematic error on measurements of the angu-
lar diameter distance and Hubble parameter by 1 ∼ 2%,
and the growth rate parameter by ∼ 5%. This would
become non-negligible for stage-III and -IV class surveys
defined by the Dark Energy Task Force. Correctly mod-
eling redshift distortion is thus crucial, and the new pre-
scription of redshift-space power spectrum presented here
plays an essential role in constraining the dark energy
and/or modified gravity from anisotropic BAOs.

Finally, we note several remaining tasks in practical ap-
plication to the precision measurement of BAOs. One is
the improved treatment for calculation of the corrections,
A and B terms, which needs to evaluate the bispectrum
of density and velocity fields. In doing this, a system-
atic treatment using multi-point propagator developed
by Ref. [59] would be useful and indispensable. Also, the
effects of the new contributions to the redshift-space clus-
tering in the presence of the primordial non-Gaussianity
and the dark sector interaction would be presumably im-
portant (e.g., [10, 60, 61]), and should deserve further
investigation. Of course, the biggest issue is the galaxy
biasing. Recent numerical and analytical studies claim
that the scale-dependent and stochastic properties of the
galaxy bias can change the redshift-space power spec-
trum, and the potential impact on the determination of
the growth-rate parameter would be significant [62, 63].
A realistic modeling of galaxy biasing relevant for the
scale of BAOs is thus essential, and a further improve-
ment of the power spectrum template needs to be devel-
oped.
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