COSMO/COSPA 2010

A spherical collapse model with massive neutrinos

Kiyotomo Ichiki (Nagoya University, JAPAN)

K. Ichiki and M. Takada, to be submitted

Cosmic Neutrinos

- Thermal Relic From the Big Bang (not directly observed yet)
 - Fermi distribution: $f = \frac{1}{1 + e^{E/kT_{\nu}}}$
 - Present density (per flavor) $n_{\nu} = 113 \mathrm{cm}^{-3}$

Small mass (sub-eV) makes significant contribution to the total mass density of the universe

- Neutrino oscillation experiments
 - At least two flavors of neutrino are non-relativistic at present universe $2(h)^{-2}$

 $\sum m_{\nu} \gtrsim 0.056(0.095) \text{eV} \implies \Omega_{\nu} \gtrsim 1.1 \times 10^{-3} \left(\frac{h}{0.72}\right)^{-2}$

Neutrinos in Cosmology -- free streaming effect --

• Small mass \rightarrow Large thermal (random) velocity

$$v_{\rm th} = \frac{\langle p \rangle}{m} = \frac{3T_{\nu}}{m} \sim 150 \frac{a_0}{a} \left(\frac{1 \text{ eV}}{m}\right) \text{ km/s}$$

- Neutrinos do not clump below free streaming scale
 - Maximum free streaming scale

$$\lambda_{\rm fs} \lesssim \lambda_{\rm nr} = 350 \sqrt{\Omega_m} \left(\frac{m}{1 {\rm eV}}\right)^{1/2} h^{-1} {\rm Mpc}$$

Only CDM can cluster Slower gravitaional collapse

Purpose of this work

- Constraining neutrino masses from cosmology, in particular, from galaxy clusters (cluster number counts, SZ effect, ...)
- Need to include effects of neutrino masses on the non-linear structure formation, which has been neglected in the literature.
- Consider the spherical collapse model, including massive neutrinos, and apply it to the halo mass function

PRL 95, 011302 (2005)

PHYSICAL REVIEW LETTERS

week ending 1 JULY 2005

Weighing Neutrinos with Galaxy Cluster Surveys

Sheng Wang,^{1,2} Zoltán Haiman,³ Wayne Hu,⁴ Justin Khoury,⁵ and Morgan May¹ ¹Brookhaven National Laboratory, Upton, New York 11973-5000, USA ²Department of Physics, Columbia University, New York, New York 10027, USA ³Department of Astronomy, Columbia University, New York, New York 10027, USA ⁴Kavli Institute for Cosmological Physics, Department of Astronomy and Astrophysics, Enrico Fermi Institute, University of Chicago, *Chicago, Illinois 60637, USA* ⁵Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 28 January 2005; published 30 June 2005)

Large future galaxy cluster surveys, combined with cosmic microwave background observations, can achieve a high sensitivity to the masses of cosmologically important neutrinos. We show that a weak lensing selected sample of $\gtrsim 100\,000$ clusters could tighten the current upper bound on the sum of masses of neutrino species by an order of magnitude, to a level of 0.03 eV. Since this statistical sensitivity is below the best existing lower limit on the mass of at least one neutrino species, a future detection is likely, provided that systematic errors can be controlled to a similar level.

Spherical Collapse model(1)

- Consider a overdense region with a top-hat profile
 - It expands slower than the background, reaches a maximum radius, and collapses.
 - much easier than N-body simulation
 - important applications (e.g., halo mass function)
 - An important quantity:
 - critical overdensity
 - $\delta_c \approx 1.686$

One-to-one correspondance between Initial δ to the collapse time
Number of halo can be predicted using linear theory and δc

Spherical collapse model(2)

- History of the Spherical Collapse model
 - CDM only (e.g., Tomita, PTP, '69, Gunn&Gott, ApJ, '72)
 - CDM + Λ (e.g., Lahav et al., MNRAS, '91)
 - CDM + Quintessence (e.g., Wang&Steinhardt, ApJ, '98)
 - CDM + Λ + Baryon (Naoz & Barkana, MNRAS, '06)
 - CDM + coupled quintessence (e.g., Nunes & Mota, MNRAS, '06)
 - Decaying DM+Λ (Oguri, Takahashi, Kotake, '03)
 - CDM + early dark energy (e.g., Bartelmann et al., A&A, '06, Francis et al., MNRASL, '08)
 - CDM + clustering dark energy (Bjaelde&Wong, 1009.0010)
 - CDM + Λ + massive v

Spherical Collapse with v (1)

- Setup and assumptions
 - Top-hat profile of CDM and baryon remains unchanged (which significantly simplifies the calc.)
 - δ_{ν} is kept small during the collapse of CDM and baryon (check later)
 - Work with multipole-expanded boltzmann equation in Fourier space (e.g., Ma&Bartschinger, ApJ '95)
 - Insert non-linear (Newtonian) gravitational potential calculated from δ_c, δ_b and δ_ν (Singh&Ma, PRD, '03, Ringwald&Wang, JCAP, '04)

Spherical collapse with v (2)

 $\mathcal{O}(10^4)$ coupled diff. equations

Result (1) scale dependence

- In both figure, we start calculations from the same initial amplitude and the same redshift for $m_{
m u}=0.05{
m eV}$

The larger neutrino clustering is expected for the larger scales

Result (2) mass dependence

 In both figure, we start calculations from the same initial amplitude and the same redshift for R=6.89 Mpc

• The larger mass we consider, collapse redshift becomes smaller (e.g., $1+z = 1.47 \rightarrow 1.50$) and critical overdensity becomes smaller.

Result(3) critical over density

•δc becomes larger if neutrino clustering is considered (0.1%).

•neutrino clustering effect on δ_c is negligible for m < 0.05eV

- Neutrino overdensity helps CDM gravitaional collapse at linear stage, While it is less important at non-linear stage.

Discussion

- Let's apply our result to the halo mass function (Press&Schechter, ApJ, '74, Sheth&Tormen, MNRAS, '99)
 - exponentially sensitive on : δ_c

 $\frac{dn}{dM} \propto \nu \exp[-\nu^2/2]$ (Press&Schechter like mass function)

$$\nu \equiv \frac{\delta_c(z)}{\sigma(M,z)} \sim \frac{\delta_c(z)}{\sigma_8 g(z)} \qquad \qquad g(z) = \frac{\delta_L(z)}{\delta_L(z=0)}$$

 $4 imes 10^{14} [\mathrm{M}_{\odot}/h]$ $m_{\nu} = 0.165 \text{eV}$

• Neutrino brings -0.2% change in δ_c (*1.683 \rightarrow 1.680; For comparison, Λ brings -0.7% change) \rightarrow larger number of objects in the past than expected (σ_8 normalization)

5
$$\sigma$$
 object $\frac{\Delta\left(\frac{dn}{dM}\right)}{\frac{dn}{dM}} = (1-\nu^2)\frac{\Delta\nu}{\nu} \sim 24 \times 0.2\% = 4.8\%$

Discussion (2)

- Instead if one considers WMAP (CMB) normalization, mass of neutrinos (0.1eV) causes massive object less abundant: -30% for $\sim 10^{15} M_{\odot}$
- CDM mass function with lower σ_8 does not capture the full feature

Summary

- Spherical collapse model is revised by including massive neutrinos
 - Coupled linearlized Boltzmann eq. is solved using non-linear newtonian gravitational potential
 - CDM+baryon can collapse together at low redshifts
 - Neutrinos can not catch up with the collapse
 - Neutrinos delays the collapse of CDM overdense region
- Result: 0.2% change in critical over density
 - The change may bring 4.8% (1.6%) change in halo mass function for 5σ (3σ) object. However, the effect coming from the linear growth rate is much larger (good news!)
 - This is an independent support for the result of Brandbyge et al., (arXiv: 1004.4105) based on the hybrid N-body simulation including massive neutrinos.