Magnification effect on galaxy-CMB lensing

~ Impact of magnification effect on estimating primordial non-Gaussianity from CMB and galaxy observation ~

Toshiya Namikawa (The University of Tokyo) collaboration with

Tomohiro Okamura (Tohoku University)

Atsushi Taruya (The University of Tokyo)

COSMO/CosPA 2010 @ The University of Tokyo, Sep.27th – Oct.1st, 2010

Introduction

☆ Primordial non-Gaussianity

Any hint of primordial non-Gaussianity will be important to understand the mechanism of generating initial condition The Gaussian field

$$\Phi = \phi + f_{\rm NL} \phi^2 - \langle \phi^2 \rangle)$$

local-type

The primordial non-Gaussianity curvature perturbation

 $B^{\text{loc}}(k_1, k_2, k_3) = 2 f_{\text{NI}} [P_{\phi}(k_1) P_{\phi}(k_2) + (\text{cyc})]$

☆ Tests of non-Gaussiniaty

- (1) Bispectrum
 - Traditional method
 - This technique would yield constraint on $f_{\rm NL}$ of σ ($f_{\rm NL}$) ~ 3 (Planck)

(e.g. Serra & Cooray 08)

(2) Scale-dependent galaxy bias (e.g. Dalal+08)

- Presence of primordial non-Gaussianity cause scale-dependent galaxy bias

$$b \rightarrow b + f_{NI}F(k,z)$$

- This method can yield constraints of σ (f_{NL})~ a few (e.g. Carbone+08)

We explore sensitivity of imaging galaxy survey to the constraints on primordial non-Gaussianity

Observables in CMB & galaxy imaging survey

How well we can constrain f_{NL} by using all spectra ?

Magnification effect on galaxy number density

☆ However, observed galaxy number density is modified by weak lensing.

(Moessner +98, Matsubara 00)

(Magnification effect)

fluctuation of galaxy density

Power spectrum is modified by magnification <u>at large scale</u> and <u>at</u> <u>high-z</u> where the effect of non-Gaussianity become important.

Ignoring magnification in theoretical template would cause bias significantly on estimating $\mathbf{f}_{\rm NL}$

Our Work

We <u>forecast</u>

(1) constraints on f_{NL} through <u>scale-dependent bias</u>

(2) systematic bias due to ignoring magnification in theoretical template

by using all spectra obtained from CMB and galaxy survey (we not include information from bispectrum)

 \cdot Other forecast studies to constrain $f_{\rm NL}$ through scale-dependent bias

e.g. Carbone+ 08, Afshordi & Tolley 08, Takeuchi+ 10

In our work,

• we consider all signals obtained from CMB and galaxy surveys

- • we estimate impact of magnification on estimating \mathbf{f}_{NL}

Details of calculation

[Cosmology]

flat Λ **CDM**, Gaussian initial condition

$\Omega_{ m b}h^2$	$\Omega_{ m m}h^2$	Ω_{Λ}	W	n _s	A ×10 ⁹	τ	$f_{ m NL}$
0.022	0.13	0.72	-1.0	0.96	2.4	0.086	0.0

[Survey]

CMB experiment : Planck Galaxy survey: LSST-like -

$$f_{sky} = 0.5$$

 $z_m = 1.5$ $N_g = 100 [/ \arctan^2]$

[Model of galaxy samples]

• Redshift distribution $n(z) \propto z^2 \exp[-(z/0.96)^{1.5}]$ with <u>3 redshift bins</u> •Bias model $b = b_0 + b_z / D(z)$ $\begin{cases} b_0 = 1.5 \\ b_z = 2.0 \end{cases}$ •Intrinsic ellipticity $\gamma_{int} = 0.3$

Then, we calculate Fisher matrix and estimate

 $\begin{cases} 1-\sigma \text{ marginalized error on } f_{\rm NL} \\ \text{systematic bias due to ignoring magnification} \\ \text{by using auto/cross correlations of } \Theta E d \gamma g \end{cases}$

Result 1 (Constraints on f_{NL})[1- σ contour][sensitivity to Ng]

Including γ g, improvement of the constraint is by a factor of ~1.5-2

 N_g [/ arcmin²] The constraint is sensitive to shear noise

Constraint on $f_{\rm NL}$ is improved by a factor of ${\sim}2$ compared to galaxy count alone

Result 2(effect of magnification)

[Systematic bias due to ignoring magnification]

Although the constraint is insensitive to magnification, neglecting magnification effect in theoretical template cause significant bias on estimating f_{NL}

Summary

We explored

(1) how well we can constrain $\mathbf{f}_{\rm NL}$ by using all spectra

(2) significance of systematic bias due to ignoring magnification

We found that

(1) if we use all signals, improvement of σ (f_{NL}) is by a factor of ~2 compared to galaxy count alone.

(2) Although the constraint is insensitive to magnification, ignoring magnification in theoretical template cause highly biased estimation on $f_{\rm NL}$

If we take into account the effect of magnification, constraint on f_{NL} is further improved by using all information obtained from imaging survey of galaxy