Jean-François Dufaux

A.P.C.

1日: 1월: 1분: 1분: 문

288

Gravitational Waves from Preheating after Inflation: Overview and Recent Results

JFD - Phys.Rev.Lett.103 (2009) JFD, Figueroa, Garcia-Bellido - Phys.Rev.D (in press) Brax, JFD, Mariadassou - to appear

Preheating after Inflation

Inflation		Reheating		Hot Big Bang
$\phi(t)$: condensate	\longrightarrow	Particle-genesis	\rightarrow	Thermal bath
no particle		Thermalization		of particles
← CMB,				\hookrightarrow BBN ,

In many models, the inflaton decays in a violent and highly inhomogeneous way

 \Rightarrow Production of gravity waves, carrying relic information about this epoch

Preheating: Explosive decay of the inflaton into large, non-thermal fluctuations of itself and other bosonic fields coupled to it Non-perturbative production of particles, occupation numbers $n_k \sim 1/g^2 >> 1$ Non-linear classical random fields \Rightarrow Lattice Simulations

Long, turbulent-like evolution towards thermal equilibrium

GW from Preheated Scalar Fields: Methods [JFD, Bergman, Felder, Kofman, Uzan '07]

Evolve GW on the lattice, together with the scalar fields source

$$\ddot{h}_{ij} + 3 \, \frac{\dot{a}}{a} \, \dot{h}_{ij} - rac{
abla^2}{a^2} \, h_{ij} = 8\pi \, G \, \Pi_{ij}^{TT}$$

 $\mathsf{Calculate} \ \rho_{\mathrm{gw}} \propto \langle \dot{h}_{ij} \dot{h}_{ij} \rangle \Rightarrow \mathsf{GW} \ \mathsf{spectrum} \ \mathsf{today:} \ h^2 \, \Omega_{\mathrm{gw}} = \left(\frac{h^2}{\rho_{\mathrm{c}}} \frac{d\rho_{\mathrm{gw}}}{d \ln f} \right)_0$

Linear stage of preheating:

Gaussian random fields and analytical evolution of the source \Rightarrow Check of the lattice results

Turbulence and thermal bath

Scalar fields with $\chi_k(t) \propto \exp[i\omega_k t]$ GW production forbidden by helicity conservation

Different for massless vector fields

Most GW produced in intermediate non-linear and non-perturbative stage

The final spectrum depends mainly on the characteristic size R_* (< 1/*H*) of the scalar field inhomogeneities amplified by preheating. This can be calculated analytically as a function of the parameters in a given model of inflation + preheating. The spectra of particles produced by preheating are strongly peaked around some typical (comoving) momentum k_*

 $R_* = a/k_*$: Characteristic physical size of the source inhomogeneities

← Peak frequency and amplitude of GW spectrum today:

$$f_* \approx \frac{1}{(R_* H)_p} \left(\frac{\rho_{\rm tot}^{1/4}}{10^{11} \,{
m GeV}} \right) \, 10^3 \,{
m Hz} \quad , \quad h^2 \, \Omega_{\rm gw}^* \approx \, 10^{-6} \, (R_* \, H)_p^2$$

GW from Preheating in 3 Main Categories of Inflationary Models Preheating after chaotic inflation: $f_* \sim 10^6 - 10^9$ Hz $(\rho_{\rm inf}^{1/4} \sim 10^{15} \text{ GeV})$ Preheating after hybrid inflation: GW cover a wide range of frequencies and amplitudes. Can be observable, but requires very small coupling constants

nac

Preheating after Small Field Inflation [Brax, JFD, Mariadassou]

In these models, $V_{inf}^{1/4}$ can be very small (Ex: [German, Ross, Sarkar])

$$V = M^4 \left[1 - f\left(rac{\phi}{v}
ight)
ight]$$
 with $f\left(rac{\phi}{v}
ight) \propto rac{\phi^{
ho}}{v^{
ho}}$ for $\phi \ll v$

Preheating by tachyonic growths and *decreases* of inflaton fluctuations

Preheating ends in one oscillation for $v/m_{\rm Pl} \lesssim 10^{-5} \Rightarrow k_* \approx H$ (!!)

$$\Rightarrow f_* \approx \frac{M}{10^{10}\,\mathrm{GeV}}\,10^3\mathrm{Hz}\ ,\ h^2\,\Omega_{\mathrm{gw}}^* \approx 10^{-6}$$

Otherwise, GW at high frequencies if $p \neq 3$

Other Source: Flat Directions Condensates in Supersymmetric Theories

In SUSY theories, the potential for the scalar fields (e.g. super-partners of quarks and leptons) is flat along some directions in field space. The flatness is lifted by SUSY-breaking and non-renormalizable terms

$$V = m^{2} |\phi|^{2} + \left(\frac{A m}{M_{P}^{n-3}} \phi^{n} + \text{h.c.}\right) + \frac{|\lambda|^{2}}{M_{P}^{2n-6}} |\phi|^{2n-2} + \dots \qquad (m \sim \text{TeV})$$

In the early universe:

[Dine, Randall, Thomas '95]

 ϕ can acquire a very large VEV during inflation. Subsequent evolution damped untill $H \sim m$. Then, out-of-phase oscillations of Re(ϕ) and Im(ϕ).

Ex: Affleck-Dine baryogenesis

Specific non-perturbative decay channels exist for theses complex scalar fields [Olive, Peloso '06], [Basboll et al '07], [Gümrükçüoğlu et al '08], ...

GW from the Non-Perturbative Decay of Flat Directions [JFD '09]

Peak frequency and amplitude today:

$$f_* \sim \left(rac{a_i}{a_r}
ight)^{1/4} \sqrt{rac{m}{\mathrm{TeV}}} 5 \, imes \, 10^2 \, \mathrm{Hz} ~, ~ h^2 \, \Omega^*_{\mathrm{gw}} \, \sim \, 10^{-4} \, \left(rac{\Phi_i}{M_P}
ight)^4 \, \left(rac{a_i}{a_r}
ight)$$

Main parameters:

Soft SUSY-breaking mass $m \sim TeV$

 a_i/a_r : depends on inflaton sector / thermal history of universe

Initial VEV Φ_i of condensate when it starts to oscillate. Needs to be large for GW to be observable (very flat directions)

◆ロ > ◆母 > ◆臣 > ◆臣 > ◆臣 > ◆日 >

GW from Abelian Gauge Fields at Preheating [JFD, Figueroa, Garcia-Bellido]

In realistic models, gauge fields also abundantly produced at preheating Lead to new terms in anisotropic stress sourcing GW (Ex: $\Pi_{ij} \supset E_i E_j, B_i B_j$) May enhance GW production from turbulent evolution towards thermal equilibrium after preheating ; but not in abelian scalar-gauge theories Out-of-equilibrium gauge fields are also ubiquitous in other sources of GW (Ex: phase transitions, local topological defects).

Lattice simulations of gauge theories: (a nightmare...)

$$-\mathcal{L} = (D_\mu X)^* D^\mu X + rac{1}{4} F_{\mu
u} F^{\mu
u} + ... ext{ with } D_\mu = \partial_\mu - i \, e \, A_\mu$$

Gauge invariance is lost by naive discretization (Ex: $\partial^+_{\mu} X = \frac{X(x+\hat{\mu})-X(x)}{dx^{\mu}}$). Links: $U_{\mu}(x, x + \hat{\mu}) \equiv e^{-ie \int_x^{x+\hat{\mu}} A_{\mu} dx^{\mu}} \Rightarrow D^+_{\mu} X = \frac{U_{\mu}(x, x+\hat{\mu}) X(x+\hat{\mu}) - X(x)}{dx^{\mu}}$ Derive discrete equations of motion from lattice action invariant under a lattice gauge transformation \Rightarrow Constraint equations follow from dynamical equations that are evolved.

We developed method to compute GW production in scalar-gauge theories on lattice with second order accuracy in lattice spacing and timestep, = Model: Abelian-Higgs Preheating after Hybrid Inflation

$$V = \frac{\lambda}{4} \left(|X|^2 - v^2 \right)^2 + \frac{g^2}{2} \phi^2 |X|^2 + V_{\rm sr}(\phi)$$

Inflaton ϕ coupled to waterfall ("Higgs") field X coupled to U(1) gauge field A_{μ} . As X goes to its VEV after inflation, its fluctuations are amplified by tachyonic preheating and source the production of A_{μ} .

うくで

Abelian-Higgs Cosmic Strings during Preheating

Points where X = 0 form line-like configuration with non-zero potential energy A_{μ} concentrates in those regions to minimize $\rho \supset |\partial_{\mu}X - ieA_{\mu}X|^2$

|X|-profile around *B*-strings

Arg(X)-profile around *B*-strings

Spatial distributions during symmetry breaking

Spatial distributions of \vec{B}^2 at different times

Signatures in the GW Spectra

Three well-distinct characteristic scales:

Length of straight string segments \geq size of X-bubbles (R_*) Width / interactions of X and A_μ around the strings (m_X and $m_A \gg R_*^{-1}$)

GW Spectrum Today

$$h^2 \,\Omega_{\rm gw}^* \sim \begin{cases} 10^{-6} \, V_c^{-2/3} \, \left(\frac{v}{M_{\rm Pl}}\right)^2 & \text{for } g^2 \gtrsim \lambda \text{ and } V_c \gtrsim 500 \, g^3 \\\\ \frac{10^{-8}}{g^2} \, \left(\frac{v}{M_{\rm Pl}}\right)^2 & \text{for } g^2 \gtrsim \lambda \text{ and } V_c \lesssim 500 \, g^3 \\\\ 10^{-5} \, \frac{\lambda}{g^2} \, \left(\frac{v}{M_{\rm Pl}}\right)^2 & \text{for } g^2 \ll \lambda \end{cases}$$

Conclusions and Perspectives

- There can be several instances in the early universe where scalar field condensates decay in an explosive and highly inhomogeneous way. This generates a stochastic background of GW that carries unique informations about these high-energy phenomena.
- For preheating after inflation, these GW can be observable if inflation occurs at low enough energy scales (complementary to GW from inflation itself). Depending on the model, they can cover a wide range of frequencies and amplitude.
- For the non-perturbative decay of SUSY flat directions, these GW fall naturally in the Hz-kHz frequency range where ground interferometers operate. They carry informations on both SUSY (scale of SUSY breaking) and inflation (reheat temperature).
- In both cases, gauge fields can have important consequences on GW production and leave specific imprints in the GW spectra
- Non-abelian symmetries (SU(2) × U(1)) necessary to produce massless gauge fields (photons) at preheating. ⇒ GW production from long, turbulent evolution towards thermal equilibrium after preheating??

nac

- Non-perturbative decay of gauge flat directions (Ex: MSSM). [JFD, Gümrükçüoğlu, Peloso]
- Applications to other GW sources: cosmic strings, ...