Dark Matter and Pulsar Signals for PAMELA, Fermi and ACTs

Danny Marfatia

with Barger, Gao, Keung, Shaughnessy 0904.2001 with Barger, Gao, Keung 0906.3009

A survey of recent cosmic ray data PAMELA: rising positron fraction from 10 - 100 GeV

PAMELA: does the positron fraction continue rising?

PAMELA: no excess in $ar{p}/p$ spectrum from 0.06 – 180 GeV

ATIC/PPB-BETS: – bump in $e^+ + e^-$ spectrum between 200 and 800 GeV – ATIC excess is 70 events

HESS: cutoff in $e^+ + e^-$ spectrum at about a TeV

HESS: – no bump in $e^+ + e^-$ spectrum from 340 – 1000 GeV – confirms falling spectrum above 1 TeV

- statistically limited

Fermi: – no bump in $e^+ + e^-$ spectrum from 20 – 1000 GeV – expected 7000 excess events to confirm ATIC

excess from 200-1000 GeV subject to interpretation
slight change in SN injection spectrum can reproduce data

PAMELA: $e^+ + e^-$ spectrum up to 200 GeV

PAMELA: electron spectrum up to 200 GeV

New ATIC analysis

Spectrum hardens slightly at 100 GeV and softens at 1 TeV

Statistical and systematic uncertainties added in quadrature for Fermi and HESS

Fermi: – no excess in gamma-ray spectrum from 0.1 – 10 GeV – contradicts EGRET data

|b|>10 degrees

WMAP Haze: residual microwave radiation between 23 – 94 GHz

Large and unknown systematic uncertainties, especially in the inner galactic region

change in background injection spectrum can achieve agreement with Fermi electron data, but not PAM data: primary anomaly is PAM positron excess

consider all data except ATIC

Ineed source that produces positrons but not antiprotons

source must not produce a "feature" to be consistent with Fermi data

spectrum must fall off above 1 TeV as per HESS

ø possibilities are

- dark matter annihilation
- dark matter decay
- pulsars

How these sources provide viable explanations:

DM annihilation/decay:

In the halo, DM+DM --> SM particles --> decay/hadronize/shower to e^{\pm}, \bar{p} or long-lived DM --> SM particles --> e^{\pm}, \bar{p}

 e^{\pm},\bar{p} interact with the galactic magnetic field, ISRF, ISM and lose energy via

- inverse compton scattering which produces gamma rays
- synchrotron radiation in the form of radiowaves
- spallation on heavy nuclei

 e^{\pm}, \bar{p} eventually make it to the earth with scrambled trajectories

Gamma-rays produced as FSR, bremsstrahlung, in pion decay and IC essentially come directly to the earth

IC spectral shape will turn out to be similar for all scenarios since the e^{\pm} required by data is basically fixed

Main difference in gamma-ray spectra arises from pion decay and FSR which is model-dependent and dominates IC close to the endpoint

Mature pulsars: (0.05 < T < 1 Myr)

 e^{\pm} are confined to the pulsar wind nebula until it merges with the ISM. Merger process is fast so that pulsars can be treated as burst-like sources of e^{\pm}

Contribution could be from a few local pulsars
Geminga: d = 160 pc, T = 0.37 Myr
Monogem: d = 290 pc, T = 0.11 Myr
but pair conversion efficiency needs to be high (30 - 40%)

Contribution could be from a large number of pulsars, distant and local, with an assumed continuum distribution and injection spectrum

 $\frac{dN_{e^{\pm}}}{dE} \propto E^{-1.5} e^{-E/E_p}$

absence of hadronic showers

--> no antiprotons
--> easily consistent with PAM antiproton data

primary gamma-ray flux is negligible compared to the diffuse flux

--> only contribution is from IC scattering
--> easily consistent with Fermi gamma-ray data

DM annihilation/decay

Consider 2-body final states

WW, ZZ, qq, hh are disfavored because of overproduction of antiprotons, or positron spec too flat

Consider only $ee, \mu\mu, \tau\tau$, and to these channels with equal branching fractions

For DM decay, effectively assuming that DM is a scalar

Other channels, $W\ell, Z\nu, \ell\ell\nu$ possible for fermion DM decay

- $W\tau, Z\nu, \tau\tau\nu$ give too flat positron spectra

 $M_{DM} = 1 \,\mathrm{TeV}$

line spectrum for ee

from MicrOMEGAs

from DMFIT

Dark matter halo profiles

• Reference $\langle \sigma v \rangle = 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}$ to obtain relic density

BF = "boost factor" from s-channel resonance, Sommerfeld effect, DM overdensities. Need large BF of order 100-10000.

Need T of order 10²⁶s (billion times the age of the universe)

Typical lifetime of a TeV-scale particle that decays via a dim-6 operator suppressed by the GUT scale is $T \sim 2 \times 10^{26} s \left(\frac{\text{TeV}}{\text{Mpm}}\right)^5 \left(\frac{\text{M}_{\text{GUT}}}{10^{16} \text{ GeV}}\right)^4$

Propagation with GALPROP

Allow variations of

- background injection spectral index between 2.2 2.9
- overall normalization of the background
- 3 diffusion parameters within ranges consistent with nuclei data
- energy calibration scale for HESS and Fermi electron data

Define a generic energy scale of injected positrons:

	M_{DM}	Annihilating DM
$E_s \equiv \langle$	$\frac{M_{DM}}{2}$	Decaying DM
	$\bar{E_p}$	Pulsars

For a given E_s vary BF (for DM annihilation), T (for DM decay) and a spectrum normalization for pulsars

DM annihilation (isothermal profile)

- Soft spectra preferred
- 1 TeV into $\mu\mu$ works well; 2 TeV into au au works best

χ ² /dof S3H	$\begin{array}{c} \mu^{+}\mu^{-}(anni) \\ \mu^{+}\mu^{-}(ae^{cay}) \\ \mu^{+}\mu^{-}(de^{cay}) \\ \mu ls^{ars} \end{array}$	$\mu^{+}\mu^{-}(anni.)$ $\mu^{+}\mu^{-}(decay)$ (pulsars)	(⁻ (anni.) (⁻ (decay) kars)	
Fermi e	30 30 25	1.4 1.3 15	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & 1.2 \\ 1.1 & & 11 \end{array}$	anni.) decay) rs)
Fermi <i>y</i>	35 36 ³⁸	27 26	11 14 17	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ 0.5 & 0.5 & \end{array}$
PAMELA	Image: Market state Image: Market state Image: Market state 12 12 150	15 17 0.4 15 17 5.7 5.4 5.4 11 14 9.4 3.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3 4.1 12 7.0 7.0 7.4 12 12 11 4.5 5.7 2.1
E s [GeV]	Image: output lineImage: output lineImage: output lineImage: output line121212119150150110110	15 17 5.7 15 5.4 11 14 9.4 3.2 800	17 0.4 5.6 3.5 16 20 9.6 2.8 1000	4.3 4.1 1. 7.0 7.0 7. 12 12 1 4.5 5.7 2. 2000 2000 2000

au au disfavored by preliminary all-sky Fermi gamma-ray data Only $\mu\mu$ allowed See talk by Cirelli

Pre-Fermi all-sky gamma-ray map showed no halo profile preference DM annihilation

 $M_{DM} = 1$ TeV into $\mu\mu$

Gamma-ray predictions for Fermi

Isothermal profile

$M_{DM} = 1$ TeV into $\mu\mu$

Now cored profiles favored for DM annihilation

Summary

- Pulsars readily reproduce the data
- Simplest dark matter scenarios are strained

Annihilation:

- need a huge cross section (PAM positron data)
- to $\mu\mu$ (PAM antiproton and Fermi gamma-ray data)
- TeV and higher mass (HESS and Fermi electron data)
- cored halo profiles preferred

Ø Decay:

- need very long lifetime
- to $\mu\mu$
- multi-TeV mass

To invoke dark matter explanations, need to go from demonstrating consistency to seeing unique signals

Generic dark matter signatures?

 $\odot \Phi$ has zero total angular momentum

A helicity suppression prevents annihilation/decay to light fermion pairs

suppression disappears if final state contains an additional photon

 $\odot \Phi$ may be

- annihilating Majorana fermions
- annihilating self-conjugate scalars
- a decaying scalar

Photon distributions

$$r = 4m_E^2/M_{\Phi}^2$$

$M_{\Phi} = 1.2 \; { m TeV}$ (Einasto profile)

Gamma-ray predictions for Fermi and ACTs

For electroweak bremsstrahlung, see talk by Bell