Direct measurement of Hubble parameter with gravitational waves

Atsushi Nishizawa (Kyoto Univ., Japan)

<u>Collaborators</u> Atsushi Taruya, Shun Saito

```
27 Sep. - 1 Oct. 2010,
COSMO/CosPA @ Univ. of Tokyo
```


Abstract

Standard candle

Type-la supernova data provide important evidence about cosmic acceleration (dark energy). However, there are various systematic erorrs, e.g. uncertainty in the light curve, extinction by dust etc.

Standard siren

Gravitational waves from a binary object are often called standard siren, because they can be an unique tool to measure cosmological expansion with a good precision.

Our work

We show that the Hubble parameter at each redshift, H(z), can be measured with the GW standard siren. Supposing future space-based GW detector DECIGO and neutron star binaries observed by DECIGO, we found that H(z) can be measured with 3-10% accuracy up to z=1.

Constraints on dark energy

but less than 10% accuracy is needed to discriminate various theoretical models.

Standard siren

[Schutz 1986]

Gravitational waves from a compact binary

chirp mass From observational data, $M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$ h_{+x}, f, f, f, f redshifted chirp mass $f(t) \propto [(1+z)M_c]^{5/3} f^{11/3},$ $M_z \equiv (1+z)M_c$ GW waveform $h_{+\times}(t) \propto \frac{[(1+z)M_c]^{5/3} f^{2/3}}{D_t},$ luminosity distance D_L

Luminosity distance is determined by GW observation.

The redshift can NOT determined only by GW observation.

Assuming the redshift is determined by EM observation of the host galaxy,

 M_c can be determined.

z-dL relation can be obtained.

Measurement of cosmological expansion by GWs

No need of distance ladder. Consistency test of SNe observation.

z distribution of NS binary

Linear fitting of the estimation by Schneider+ 2001 [Cutler & Holz 2009]

DECIGO

Deci-hertz Interferometer Gravitational wave Observatory

- Launch 2027-
- 4 clusters
- independent
 8 interferometers
- arm length: 1000 km
- Fabry-Perot cavity
- finnese: 10
- targeted sources inflationary GWB, IMBH binaries, NS binaries

NS binaries seen by DECIGO

Luminosity distance is an integrated quantity of H(z)

$$d_L^{(0)}(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

It's likely to average out small structures on cosmic expansion.

Parameterization of dark energy

$$H(z) = H_0 \left\{ \Omega_m (1+z)^3 + (1-\Omega_m) \exp\left[3\int_0^z dz' \frac{1+w(z')}{1+z'}\right] \right\}^{1/2}$$
$$w(z) = w_0 + w_1 \frac{z}{1+z}$$

Measurement accuracy of cosmological parameters strongly depends on the parameterization,

which sometimes makes the observational errors amplified.

To avoid those issues, we need to directly measure H(z).

Dipole of luminosity distance

[Bonvin+ 2006]

Method was first proposed in the context of a supernova.

Observer is at rest relative to CMB frame. (we see only monopole)

Observer is moving with respect to the CMB frame

Luminosity of a binary is Doppler-shifted.

Dipole of the luminosity Distance is induced.

$$d_L(z,\mathbf{n}) = \sum_{\ell,m} a_{\ell m}(z) Y_{\ell m}(\mathbf{n})$$

Approximated by taking up to the dipole term

$$d_L(z, \mathbf{n}) = d_L^{(0)}(z) + d_L^{(1)}(z)(\mathbf{n} \cdot \mathbf{e}).$$

monopole
$$d_L^{(0)}(z) = \frac{1}{4\pi} \int d\Omega_{\mathbf{n}} d_L(z, \mathbf{n}) = (1+z) \int_0^z \frac{dz'}{H(z')},$$

dipole $d_L^{(1)}(z) = \frac{3}{4\pi} \int d\Omega_{\mathbf{n}}(\mathbf{n} \cdot \mathbf{e}) d_L(z, \mathbf{n}). = \frac{|\mathbf{v}_0|(1+z)^2}{H(z)},$

If v_0 is known from CMB measurement, H(z) can be directly measured.

$$\frac{\Delta H(z)}{H(z)} = \frac{\Delta d_L^{(1)}(z)}{d_L^{(1)}(z)} = \sqrt{3} \left[\frac{d_L^{(1)}(z)}{d_L^{(0)}(z)} \right]^{-1} \left[\frac{\Delta d_L^{(0)}(z)}{d_L^{(0)}(z)} \right]$$

Measurement accuracy of $d_L^{(0)}(z)$

For a single binary

Random errors are reducible by observing many binaries.

Measurement error of H(z)

For all observed binaries

Solid curve : fiducial cosmological model ($w_0 = -1, w_a = 0, \Omega_m = 0.3, H_0 = 72 \text{ km/sec/Mpc}$) Error bars: red (observation time = lyr), green (3yr), blue (10yr)

Measurement accuracy of H(z)

Solid curves: with lensing error, Dotted curves: no lensing error (somehow subtracted)

Assuming 3yr observation, H(z) can be constrained with 3-10% accuracy up to z=1.

Summary

We proposed the method to directly measure H(z) with a space-based GW detector, DECIGO and BBO.

- from measurement of the dipole of luminosity distance: DECIGO can measure H(z) at 3-10% level below z=1 for 3-yr observation.
- Comparison with other methods
 - SNe : To measure H(z) with 3% at z=0.1-0.5, $10^5 10^6$ samples are needed. This is unrealistic.
 - BAO : Future project can measure H(z) with accuracy 1% at z=1 and above. It's complementary to our method, because the sensitive z-range is different.