Are 3-point Correlations of ζ Constant Outside the Horizon ? [Yes, but read on for more]

Namit Mahajan and Raghavan Rangarajan Physical Research Laboratory, Ahmedabad, India (nmahajan,raghavan@prl.res.in)

NON-GAUSSIANITIES IN SINGLE FIELD INFLATION

NON-GAUSSIANITIES IN THE CURVATURE PERTURBATION ζ CAN ARISE FROM 1) SELF INTERACTIONS OF THE INFLATON, AND 2) NON-LINEARITIES IN COSMOLOGICAL PERTURBATION THEORY.

USUALLY THE SELF INTERACTION CONTRIBUTION IS IGNORED. FOR EXAMPLE, CONSIDER CUBIC SELF INTERACTIONS, $\mu \phi^3$.

THE SELF INTERACTION CONTRIBUTION TO < ζ^3 > IS PROPORTIONAL TO THE SLOW ROLL PARAMETER $\xi \sim V^{"}$, AND SO IS IGNORED COMPARED TO TERMS PROPORTIONAL TO SLOW ROLL PARAMETERS $\epsilon \sim V^2$ AND $\eta \sim V^{"}$. BUT

1. FOR MANY MODELS (NEW INFLATION, SMALL FIELD NATURAL INFLATION AND RUNNING MASS INFLATION), $\xi >> \epsilon$.

2. THE SELF INTERACTION CONTRIBUTION IS ACTUALLY ~ ξN_e , WHICH IS COMPARABLE TO η .

N_e = THE NUMBER OF E-FOLDINGS SINCE HORIZON EXIT, AND IS 60 FOR OUR CURRENT HORIZON.

DO SELF INTERACTIONS IMPLY GROWTH OUTSIDE THE HORIZON ?

BUT $<\zeta(k)^3 > ~ N_e$ IMPLIES THAT THE 3-POINT FUNCTION IS GROWING AFTER HORIZON EXIT ! THIS IS CONTRARY TO ONE'S EXPECTATIONS.

IS THE CALCULATION OF THE INFLATON SELF INTERACTION CONTRIBUTION TO $<\zeta^3$ > INCORRECT?

IT HAS BEEN DONE INDEPENDENTLY BY FALK ET AL (1993), ZALDARRIAGA (2004), BERNARDEAU ET AL (2004) AND SEERY ET AL (2008) IN DIFFERENT CONTEXTS.

THEN LET US RE-EXAMINE THE ARGUMENT THAT CORRELATIONS OF THE CURVATURE PERTURBATION $\zeta(k)$ ARE CONSTANT OUTSIDE THE HORIZON. IN THE LITERATURE, $\zeta(k)$ IS SHOWN TO BE CONSTANT OUTSIDE THE HORIZON. BUT THIS ONLY IMPLIES THAT THE 2-POINT FUNCTION, $\langle \zeta(k_1) \zeta(k_2) \rangle = (2\pi)^3 |\zeta(k_1)|^3 \delta^3 (\mathbf{k_1} - \mathbf{k_2})$ IS CONSTANT AFTER HORIZON EXIT.

WHAT ABOUT HIGHER POINT FUNCTIONS ?

CONSTANCY CONDITION FOR ζ(k) 3-POINT FUNCTION

$$\left\langle \hat{\zeta}(t)^{3} \right\rangle = i \int_{t_{0}}^{t} dt' \left\langle \left[\hat{H}_{I}(t'), \hat{\zeta}_{I}(t)^{3} \right] \right\rangle$$

(OPERATORS ON THE RHS ARE IN THE INTERACTION PICTURE)

FOR $< \zeta(t)^3 > TO BE CONSTANT OUTSIDE THE HORIZON THE CONTRIBUTION TO THE INTEGRAL FOR t AFTER HORIZON EXIT SHOULD BE SUPPRESSED.$

WEINBERG (2008) SHOWED THIS WAS SO, BUT FOR GAUSSIAN INFLATON FLUCTUATIONS, I.E., IGNORING SELF INTERACTIONS OF THE INFLATON.

WE INVESTIGATE WHETHER THE 3-POINT FUNCTION IS CONSTANT OUTSIDE THE HORIZON, IN LIGHT OF THE TIME DEPENDENT CONTRIBUTION PROPORTIONAL TO N_e FROM INFLATON SELF INTERACTIONS,

CALCULATION OF THE 3-POINT FUNCTION OF $\zeta(k)$ AND f_{NL}

WE CALCULATE < $(\delta \phi)^3$ > IN THE $\delta \phi \neq 0$ GAUGE, USING THE CANONICAL FORMALISM FOR CUBIC NEW INFLATION $V(\phi) = V_0 - \mu \phi^3$. WE THEN RELATE $\zeta(k,t)$ TO $\delta \phi(k,t)$. AND CALCULATE < ζ^3 >, AND THE NON-GAUSSIANITY PARAMETER f_{NL} . BELOW t IS ARBITRARY, UNLIKE IN THE δN FORMALISM WHERE t ~ TIME OF HORIZON EXIT.

$$\begin{split} \hat{\zeta}(\mathbf{k},t) &= -\frac{1}{\sqrt{2\epsilon}} \hat{\delta\phi}(\mathbf{k},t) + \frac{1}{2} \left(1 - \frac{\eta}{2\epsilon} \right) \int \frac{d^3q}{(2\pi)^3} \, \hat{\delta\phi}(\mathbf{k}_1 - \mathbf{q},t) \hat{\delta\phi}(\mathbf{q},t) + \cdots \\ & \langle \hat{\zeta}(\mathbf{k}_1,t) \hat{\zeta}(\mathbf{k}_2,t) \hat{\zeta}(\mathbf{k}_3,t) \rangle \equiv (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{6}{5} f_{NL} \sum_{i < j} P_{\zeta}(k_i) P_{\zeta}(k_j) \\ & i, j = 1, 2, 3, \, k_i = |\mathbf{k}_i| \\ \frac{6}{5} f_{\rm NL}(k_1,k_2,k_3,t) = \underline{\xi} \left[\frac{1}{3} + \gamma - \underline{\mathbf{N}_{\mathbf{e}}} + \frac{3}{\sum_i k_i^3} \left(k_t \sum_{i < j} k_i k_j - \frac{4}{9} k_t^3 \right) \right] + \frac{3}{2} \epsilon - \underline{\eta} + \frac{\epsilon}{\sum_i k_i^3} \left(\frac{4}{k_t} \sum_{i < j} k_i^2 k_j^2 + \frac{1}{2} \sum_{i \neq j} k_i k_j^2 \right) \\ & k_t = \sum_i k_i \,, \, \mathbf{k}_i \text{APPROX. EQUAL}$$

THUS THE 3-POINT FUNCTION OF ζ DOES NOT GROW OUTSIDE THE HORIZON.

TIME EVOLUTION OF f_{NL} DUE TO SELF INTERACTIONS IS CANCELLED BY CONTRIBUTION OF OTHER TERMS FROM COSM. PERT. THEORY.

$$df_{\rm NL}/dt \approx (5/6) d[-\xi N_e - \eta]/dt = (5/6) [-\xi H + \xi H] = 0$$

 $f_{\text{NL}} \text{ IS A FUNCTION OF } \epsilon(t), \eta(t), \xi(t) \text{ AND } N_{\text{e}} = \text{H} (t - t_{\text{exit}}). \text{ NOW } d\epsilon/dt \simeq \left[4\epsilon^2 - 2\eta\epsilon \right] H, \ d\eta/dt \simeq \left[2\epsilon\eta - \xi \right] H, \ d\xi/dt \simeq \left[4\epsilon\xi - \eta\xi \right] H$

CONCLUSION: $d f_{NL}/dt = 0$

FOR $n_s = 0.96$, $\eta = -0.02$, $\xi = 0.5 \eta^2$, $\epsilon << \xi$. $\xi N_e = 0.012$. SO THE SELF INTERACTION CONTRIBUTION ~ ξ SHOULD NOT BE IGNORED OUTRIGHT.