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» Observables in large-scale structure surveys
» Historical perspectives and scientific objectives

» A self-gravitating expanding dust fluid, evolution equations
» Results from standard perturbation theory calculations

» A field theory reformulation of the evolution equations
» The closure and time-flow equations

» The RPT reformulation of the perturbative series
» Insights into higher order propagators

» Using large-scale structure observations to test gravity
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What for?

» Dark energy equation of state

» Neutrino mass

» Primordial NG (faL parameters)
» Testing gravity
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Two regimes of interest

D accurate position measurements of
the BAO at very large scales

» accurate description of the (poly)-
spectra when it enters the quasi-
linear regime
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Figure 4. Power spectra at redshift z = 1 (divided by a smooth one). The continuous
line is the result of the present paper, compared with linear theory (dotted), 1-loop
PT (dash-dotted), the halo approach of ref. [20] (dashed). The dots with error bars
are taken from the N-body simulationd of ref. [10]. The background cosmology is a
spatially flat ACDM model with Q} = 0.73, Q) =0.043, h =0.7, n, = 1, 05 = 0.8.




A self-gravitating
expanding dust fluid




A self-gravitating expanding dust fluid

p Data show that large-scale structure has formed from small density inhomogeneities since time of
matter dominated universe with a dominant cold dark matter component

The Vlasov equation (collisionless Boltzmann equation) - f(x,p)
is the phase space density distribution - are fully nonlinear.

df 0 p 0 0 0 B
= gl P )+ oo f(x,pt) max@(X)apf(x,p,t) =0

Ad(x) = 4”57” ( / f(x,p,t)d%p — n)

This is what N-body codes aim at simulating...

The rules of the game:
single flow equations

o 1
Peebles |980; Fry 1984 g"(xvﬂ + EV;:- (1400, 0))ui(x, )] = 0
FB, Colombi, Gaztanaga, O ! 1 1
Scoccimarro, Phys. Rep. —u,(x, t —u,(x,t —u;(x, t)u; ;(x,t) = —V,®(x.t
Scoce W06 1)+ —ui( 1) 4~y () wg (%, ) ~Vid(x,1)
V2®(x,t) — 4nGp(t)a’ 6(x,t) = 0.
+ expansion with respect to initial density fields GR corrections effects:
1 5 Yoo et al., PRD, 2009
5(x,t) = oW (x,t) + 6P (x,t) + ... B, Bonvin, Vernizzi, PRD, 2010

7 Francis Bernardeau IPhT Saclay




» Motion equations in Fourier space in the
single flow approximation

1.
Bk 1) + 0k 1) = —/d3k1d3k2 5 (k — ky — ko)
X a(kl, k2)5(k1,t) e(kg,t)
Lok t)+(2+£)9(k B+ D00k t) = —/d3k ks 6p(k — k1 — ko)
H 3 H2 3 9 mUm\ v, - 1 20UD 1 2
X Bk, ka)0(k1)0(ks)
o k12.k1 o kl.kg . k%2<k1k2) o (kl.kg)Q kl.kg kl.kg
» linear order = growth rate of structure
» higher order terms = mode couplings
» equations can be solved to any arbitrary order
sM(k) = /d3k1 Bk, opk — ki) 0W (k) ... W (k,) F (ky,... k)
o) (k
f( ) _ /d3k1...d3kn Sk — ki) 0W (k) ...6W(k,) G (ky,... k)
f= dlog D ... this is the reduced velocity divergence
dloga

8 Francis Bernardeau IPhT Saclay




» The kernels can be computed recursively...

» This is here the general form taken by the second order density
field

F =

(ﬁ 1) lkl.kg 1]{1.1{2 4 (3 3!1!-2) (kl.kg)z
4 2) T2 k2 T2 k2 20 4 ) K2K2

This shape is expected (for CDM) irrespectively of background evolution, neutrino
mass, etc...

4875 |
Vo (Qm, O, w, ... ) =34/21 + ... 487 \  The PT review + refs in it |
%:4.865
Einstein-de Sitter case 7486
A4 9 4855
Flat universe: vy = 3+ ?Q;}/ 143

Oy

» Related observables (cosmic shear, redshift galaxy gatalogues)

Observations are closely related (through projections, shape integration) to the density
and the reduced velocity divergence power spectra and bispectra

p inflation provides us with a compelling framework for the origin of such density
fluctuations with specific statistics (Gaussian) and spectrum (nearly scale invariant before

horizon crossing)
9 Francis Bernardeau IPhT Saclay




» A lotis known at tree order

The tree order bispectra

Bs(ki, ko, ko) = (6 (k1)6M (k2)5® (ks)) + sym. = F.* (k1, ko) P(k1) P(ks) + sym.
+ oye + cyc
Fig, 4
Comeparisons of poly-spectra (collapsed
geometry) with N-bOd)’ simulations... ...and in observations
=1.26 J
From FB ‘94 |  k ~03h/Mpe o
2 ) ky ~ 2k, a 1

Q(6)

]

10

From PSCz catalogue, Feldman et al. 01
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But things get not as nice when one wants to include

PP

loops

Alk)

\ Zel'dovich
\Approximation]

10 102

Fig. 13. The power spectrun for n = —2 scale-free initial conditions. Symbols denote
measurements in numerical simulations from [560]. Lines denote linear PT, one-loop
PT [Eq. (169)] and the Zel’dovich Approximation results [Eq. (181)], as labeled.

Not necessarily the best
way to expand...

Different orders
become
comparable in the
nonlinear regime

Fig. 2
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A field theory
reformulation

Scoccimarro

‘97




A reformulation of the theory with a FT like approach
Scoccimarro ‘97

n
Do (k,n) = gan(n)Po(k,n =0) + /o dn'gi; (1 — 0" )vped(k1, ko) P (ki) Py(ka)
density-div v doublet doublet linear propagator
( ggg ) e’ 3 eI 2 2
9av() = 5| 3 T 5 3 -3

» Diagrams

O= i< O- << @- «é +<é +<§
@«%ﬁ@@

Note : detailed effects of baryons versus DM can be taken into account (Somogyi &

Smith 2010) with a 4-component multiplet, for neutrinos it is more complicated...
13
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Not a standard quantum field theory problem...

- The observables are (or rather PDF of) expectation values that correspond to ensemble
averages over the statistics of “initial” conditions (taken after decoupling).

- The system is not invariant over time translation: it is actually an unstable (non-equilibrium)
system, where perturbations grow with time (as ~ power-law).The late time behavior of this
system is probably non trivial and there is no known solution to it.

- Propagator has growing and decaying modes, both play important roles in the
nonlinear regime. For standard (GR) cosmological models the model dependence is entirely
encoded in the time dependence of the propagators.

- Loop corrections are not due to virtual particle productions but to mode couplings
effects, modes being set in the initial conditions.

- Vertices have a non-trivial k-dependence but which is entirely due to the conservation
equation and is independent of the energy content of the universe. Only 2 — | vertices exist

(quadratic couplings).This is not the case generically for modified gravity models (like
chameleon, DGP ..))

- Due to the shape of CDM spectrum, there are no UV divergences (nor IR). Loops, e.g.
”Renormalizations”, are all finite.




Time-flow equations M. Pietroni

From the field evolution equation to the
spectra evolution equation

Exact evolution equation for the power spectra

= gac gbd(n)Pcd(k n = O)
/ dn/ /d3qgae 1 )gbr (0, 1)

X [Yeca(k, —q, @ — k) Bfea(k, —q, a — k; 1)
+ Yea(k, —q, @ — k) Beca(k, —q, a — k; 1/')]

Approximate evolution equation for the
bispectra assuming no trispectra

Bape(k, —q, g — k; n) =
9ad(1)gve(M)ger (1) Baey(k, —a, q — k; n =0)

n /
+2/ dn'e” gaa(k,n,m" )gve(—a,n, 7 )ger(a —k,n,n")
0

X [Yagn(k, —a, 4 — k) Peg(q,n")Prn(qa — k,7')
_{_f}/egh(_qa q-— k7 k)Pfg(q -k ) n/)Pdh(k ’ 77/)
+ysgn(a —k, k, —q) Pag(k, ") Pep(q,1')]

‘08
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Figure 4. Power spectra at redshift 2 = 1 (divided by a smooth one). The continuous
line is the result of the present paper, compared with linear theory (dotted), 1-loop
PT (dash-dotted), the halo approach of ref. [20] (dashed). The dots with error bars
are taken from the N-body simulationd of ref. [10]. The background cosmology is a
spatially flat ACDM model with Qf{ =0.73, Q) =0.043, h =0.7, n, = 1, 05 = 0.8.




Valageas P, A&A, 2007
The closure theory Taruya, Hiramatsu, ApJ 2008, 2009

It makes use of the unequal time power spectra

(®a(k,m)Ps(k', 7)) = (27) dpirac(k — k) Rap(k,n,7)
and of a non-linear propagator.

< 6% (k,7)

m> - Gab(ka n,n )5Dirac<k —k )

Then evolution equations for those quantities are derived using the Direct-Interaction (DI)
approximation in which one separates the field expression in a DI part and a Non-DI part. At
leading order in Non-DI >> DI, one gets a set of closed equations,

0

A k ' Qac c k? ) ") =
877R b( 777777)+ Rb( 7777) Mas(k777777//):
n
/ dn,’Mas(k, n, 77H>Rb3(]€, 77/, 77”) + 4/d3k/’7apq (k _ kla k/)’)/lrs (k/ - k7 k)
0
N XG l(klan7n//)RpT(|k_k/|7n777”)
dn’ Nay(k,n,m" )Gk, ', 1) !
/O Nal(kﬂ%??//) -
0
5 Gab s 1) + QacGa (I 1,7) = 2 / K Yapg(k — K, K ) (K — K, k)

n
/ A’ Mas (k. m, 0" ) Gas (k1 ") xR (K0, 0" ) By ([k = K[, 7")
0

These equations can more rigorously be derived in a large N
expansion.
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FiG. 3.— Ratio of non-linear power spectrum to smoothed linear spectrum, P(k)/Pyo-wiggle(k), given at specific redshifts, z = 3, 2, 1 and
0.5. The error bar represents the N-body results taken from Jeong & Komatsu (‘20062, in which different color indicates the results with
different box size (see their paper in detail). Here, smoothed linear spectra Py, yiggle(k) were calculated from the linear transfer function
without baryon acoustic oscillation according to the fitting formula of Eisenstein & Hu (1998) (Eq.[29] of their paper). The non-linear
power spectra are obtained from the first-order Born approximation to the integral solution (Eq.[64]), with approximate solutions of the
non-linear propagator given by closure theory (thick) and RPT (thin). For comparison, one-loop predictions from the standard perturbation
theory are plotted in dashed lines. Also, in panels with z = 1 and 0.5, maximum wave number for limitation of one-loop perturbation is

indicated by vertical arrows, according to the criterion, A%(k) = k*P(k)/(272) < 0.4 (Jeong & Komatsu 2006).




The RPT
reformulation




One key ingr’ed ient . the Final density I.Ir velocity div.

!
propagator' Gaslio) bk — 1) = <5‘I’a(k,’f})>
Scoccimarro and Crocce PRD, 2005 abl 1) oD -\ (K
1

Initial Conditions

(E) ()] (1 {11y
16 16
8

FIG. 2: Diagrams for the non linear propagator G(k,n) up to two loops.
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» The dominant contributions can be resommed
exactly in the high k limit.

1
Gy (k1) = gan(n) exp ( _ k202 (e — 1)2) (high-k limit)

2
1 P(q)
2 _ 3
Ufu:g/dg qz

Comparison between RPT and N-Body Simulations
(z=0,2,5)

Crocce and Scoccimarro 05
20




P RPT (Scoccimarro and Crocce) consists in
standard PT when g—>G

P, knn)

¢V]

RPT expansion (schematic)

100 — .
:_ﬂ,..—f””f \ p :
i Linear spectrum i
suppressed at o i
high-k due to loss PEﬂ“}T
10 = of memory of =
- initial conditions  p(1) O .
. RFT_— \\ ' .
- , k) | Different orders
= / --%I--'f'-..\ﬁ dominate only in a
o / /AN narrow range of
= / / IRy 1 scales and are
N P EP}T "'. ] alwa}fs pasitive
/ L\ i
i 2-m -::-f:lnfg €oupling \
D ) 1 — I.;,. a-mud?__.-ccupllng '.III -
- ;_;- ___.-"'&I-m-::-de coupling I".I ]
] _.x"f Pl I'.I |
J II|
; / |
GD 1 111 F | 1 ! 1 1 | 1 il L1
0.01 0.05 0.1 0.5
k lh/Mch non-linear regime
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Evolution of baryonic oscillation with RPT
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Insights into higher
order propagators




» Towards a complete “renormalisation” of PT ?
FB, Crocce, Scoccimarro, PRD, 2008

The next thing to look at is

the vertex ... \

What we found is that these are the “p-point propagator” that can be
“renormalized”

1 0P, (k,n)
p! (5@51 (kl) - (5@513 (kp

_)) = op(k—ki L% (ki k)

12 (kq, ko, ks)

T abe




p This suggests another scheme : use the n-point
propagators as the building blocks

r,py,.p)=

P P P
= +
pr‘u I::)I“I pI"I

» The reconstruction of the power spectrum :

== Sum of positive terms

FIG. 3: Reconstruction of the power spectrum out of trans-
fer functions. The crossed circles represent the initial power
spectrum. The sum runs over the number of internal connect-
ing lines, e.g. the number of such circles. It is to be noted
that each term of this sum is positive.




p Calculation of renormalized vertex in high k
limit

if pij is the number of lines connecting the
segment (i) to (j)

> iy Pij s

S(p.. g2\ =< ) y

Lot} = T (——;') [T57 1] (ciky)P / As'aa(s — ') vaer (K1, ko, ka)gen(s") g fe(s")
; - . J1

"M{Pij:’ i i<j

o 2p114+2p2a+4-2p1o+p13tpes s o 2paz+pra+poz
(e = 1) (e =)
= i £
S{pij} = 2

M(pii) = 2P¥p;;!, and M(pi;) = pi;l if i # j
J J

(2)
Fabr::

— exp _aﬁk% (e® — 1)2 2
(ki,ko,ks) = €X] 5 ¢ abe, tree

p It implies that the vertex cannot be “renormalized” (into an
operator which is local in time)
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Comparison with numerical simulations
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» Re-summation can be extended to any order y
FB, Crocce, Scoccimarro, PRD, 2008 )( -““‘i'ﬁ - :

r abcdrkl L Lﬁ' L 'Y
In the large k limit we have : '
ki + ... Ky[202 A .
» Non-Gaussian initial conditions Crocce, Sefusatti, FB, 2010

» The Gamma-expansion is still valid.

» In the large k limit we now have :

G(k) — exp[ Z e”o)p]
p=2 P!

instead of

G(k) — exp [— <(V.12{)2>C(e" -~ 6”0)2]

for Gaussian initial conditions.

28




® Does it speed up the convergence for the
reconstruction of P(k) ?

® Also provide the building blocks for higher order
moments...

FIG. 3: Reconstruction of the power
fer functions. The crossed circles repr
spectrum. The sum runs over the num
ing lines, e.g. the number of such cir
that each term of this sum is positive.
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Bispectrum

T T T T T T T T T T T T T T T T T

Application to bispectra =

| tree order k,=0.068 h/Mpc

k,=0.136 h/Mpc

Measuring bispectra

» More information (hence better S/N) on mode amplitudes
(all the more when one tries to exploit the quasi-linear or
nonlinear regime, see Rimes and Hamilton, MNRAS, 05)

» Intrinsic shape is a poor measurement of the energy content
of the universe (e.g. dark energy equation of state) but can be
used to test gravity




Using large-scale
structure to test
gravity




Changing gravity

There are many ways of doing so...

19. H 3
H H?2

If the change is such that

log D
kadog —i_:(zm’y

dloga

1 \J 10 1 VCR_
G = v§R (v — SR (1 — Q) !

1 50 1 ~GR _
WG = uSR - (= 4R (1 - Q)0 !

This is still a modest change

(v¢® =~ 0.55)

(Jain, Zhang PRD °08)

(k) + (24 775)0(k) + 5 Qm £(K, ) O (k) = ..

standard parameterization (Amendola
& Quercellini, "04, Linder "05, Reyes et
al. Nature, etc.),

~ FB, Brax (in prep)

‘(DG P”

065 0.7 0.75 0.
y

05 055 0.6




In presence of a dilaton field

Brax et al. astro-ph/1005.3735

/ d4:v\/_{ Mirg Mg,g" k*(¢)0,00,¢ — V (¢) } / d /=L (W, A2(D)gpnr)

This extra field @ that is responsible of massive gravity effects. Its

effect are suppressed in dense regions through the Chameleon
mechanism.

) V(p) = A*(¢)Vo exp(—9)
A(@) =1+ (6= do)* +... ,
K (¢) =3 <d1§iA) + ;2

A new force term: F; =

1 dlog A -
-~ (@ + TR G+ s0)00x,1).)
\

Newton potentials, ®="F with

An effective potential for the standard Poisson equation

dilaton field

‘/eff-(gb) — A4(¢)VO eXp(—gb) + A(¢)Pm m2 347 ‘ O 271




> Mass of the field at 0.3 Mpc scale

e | Parameter Space for Environmentally Dependent Dilaton .
RS : Allowed Region | |

‘ l' Mass of the field at | Mpc
scale

Value of A, x 107

Mass of the field at 3 Mpc scale

Unshaded region violates Cassini bound

10° 10' 10°
Value of A

FIG. 1: Allowed parameter space for the environmentally de-
pendent dilaton model. The shaded region is that where the
presence of our galaxy is sufficient to ensure that the local
value of the fifth force coupling, a, is smaller than the Cassini
probe upperbound of 107°. We have modelled the galaxy as a
spherical dark matter halo with NFW profile. We have taken
typical values for the NFW model parameters for our galaxy:
rvie = 267Tkpe, ¢ = 12.0, M, = 0.91 x 10'2M;. We take
the galactocentric radius of the solar system, r to be rg =
8.3 kpc. These choices correspond to ®(re) = 1.02x107° and
p(re) = 0.22GeV em 2. This value for p(rg) limits A < 170,
and we have plotted the constraints on Ay for A € [1,170].

Very similar bounds on A» result for different realistic models
of the galactic hala




Evolution of structure: from GR to modified
gravity dynamics




A new Euler equation (up to second order)

H

3
775045 U (1e(1)3) = — Bk, ka) 0[Skt (k1 Kez) + Staer. (k1 k)] (617)°

150
=0 2+ (2+
(k2.k) a*m?(9)

SEul. (k17 k2) — k’% k%

S(k1)n(k2)

H2 d(ﬁeff(¢)) L) = H2 d(A<¢>Beff<¢))
— — , n = —
m?(¢) k(¢)de

(negligible in A = limit)

S(k) H?  d®Vig

k) = _ negligible in A —0 limit)
nk) =30 mi(¢) 2MZdg? (neglig
o5 ’—E-' 01 ,,zm
/ /
05 / 008 /
04p [I 006 I’ -------
-S(¥) g3 / —n(k) / ',' pk)
0 004 ’l J
01 0.02 / 'l'
/, P
0. 0. b ¢ -k ; s
-2 -1 0. L 2 -2 -L 0. L 2. -2 -1 0. L 2.
Log,,(K/k.) Log,,(&/k.) Log,, (Bk,)

FIG. 5: Dependence on k of the parameters S(k), n(k) and u(k) for n = 0 (solid lines), n = —1 (long dashed) and 1 = —2
(short dashed). Note that for the adopted parameters n(k) and 7(k) are undistinguishable.




Bispectra (equilateral configurations)
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- Similar effects (maybe slightly smaller) were found by Chan and
Scoccimarro in case of the DGP model (where small scale GR is recovered

through the Vainshtein mechanism).

Robust features are expected to be seen in large-scale structure observations.
Changing the strength/form of gravity laws is our best chance to induce significant
(although mild) changes in the shape/amplitude of the observable bispectra.




Conclusions

® New methods are being developed, still in progress

® RPT, Gamma-expansion, closure theory, time-flow RG, but also with an effective
fluid approach has been proposed as a possible route to such calculations
(Baumann et al,,'10);

e Which approach is the "best" (if any) is not clear yet;

® [mportant cross-checks with N-body codes (for various
models);

® An interesting play-ground for theoretical physicists;

® Maybe our best chance to unambiguously grasp the
nature of dark energy (in particular through detailed
analysis of 3-pts functions)




