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‣ Observables in large-scale structure surveys
‣  Historical perspectives and scientific objectives 

‣ A self-gravitating expanding dust fluid, evolution equations
‣  Results from standard perturbation theory calculations 

‣ A field theory reformulation of the evolution equations
‣  The closure and time-flow equations

‣ The RPT reformulation of the perturbative series
‣  Insights into higher order propagators

‣ Using large-scale structure observations to test gravity



Which observables ?
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Power spectra

〈δx(k1)δx(k2)〉 =
(2π)3δDirac(k1 + k2) Px(k1)

and Bispectra

k1 ≈ 2k2

k1 ≈ 0.3h/Mpc

〈δx(k1)δx(k2)δx(k3)〉 =
(2π)3δDirac(k1 + k2 + k3) Bx(k1,k2,k3)

‣ Dark energy equation of state
‣ Neutrino mass
‣ Primordial NG (fNL parameters)
‣ Testing gravity

What for?



Two regimes of interest 
‣ accurate position measurements of 

the BAO at very large scales

‣ accurate description of the (poly)-
spectra when it enters the quasi-
linear regime



A self-gravitating 
expanding dust fluid
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A self-gravitating expanding dust fluid

The Vlasov equation (collisionless Boltzmann equation) - f(x,p) 
is the phase space density distribution - are fully nonlinear.

This is what N-body codes aim at simulating...
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Peebles 1980; Fry 1984
FB, Colombi, Gaztañaga, 
Scoccimarro, Phys. Rep. 
2002

The rules of the game: 
single flow equations

df

dt
=

∂

∂t
f(x,p, t) +

p
ma2

∂

∂x
f(x,p, t)−m

∂

∂x
Φ(x)

∂

∂p
f(x,p, t) = 0

∆Φ(x) =
4πGm

a

(∫
f(x,p, t)d3p− n̄

)

+ expansion with respect to initial density fields

δ(x, t) = δ(1)(x, t) + δ(2)(x, t) + . . .

GR corrections effects:
Yoo et al., PRD, 2009
B, Bonvin, Vernizzi, PRD, 2010 

‣ Data show that large-scale structure has formed from small density inhomogeneities since time of 
matter dominated universe with a dominant cold dark matter component
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‣Motion equations in Fourier space in the 
single flow approximation

α(k1,k2) =
k12.k1

k2
1

= 1 +
k1.k2

k2
1

β(k1,k2) =
k2

12(k1.k2)
2k2

1k
2
2

=
(k1.k2)2

k2
1k

2
2

+
k1.k2

2k2
1

+
k1.k2

2k2
2

‣ linear order = growth rate of structure
‣higher order terms = mode couplings
‣equations can be solved to any arbitrary order

δ(n)(k) =
∫

d3k1 . . .d3kn δD(k− k1...n) δ(1)(k1) . . . δ(1)(kn) F (s)
n (k1, . . . ,kn)

θ(n)(k)
f

=
∫

d3k1 . . .d3kn δD(k− k1...n) δ(1)(k1) . . . δ(1)(kn) G(s)
n (k1, . . . ,kn)

... this is the reduced velocity divergencef ≡ d log D+

d log a

1
H

δ̇(k, t) + θ(k, t) = −
∫

d3k1d3k2 δD(k− k1 − k2)

× α(k1,k2)δ(k1, t) θ(k2, t)
1
H

θ̇(k, t) + (2 +
Ḣ

H2
)θ(k, t) +

3
2
Ωmδm(k, t) = −

∫
d3k1d3k2 δD(k− k1 − k2)

× β(k1,k2)θ(k1)θ(k2)
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ν2(Ωm,ΩΛ, ω, . . . ) = 34/21 + ...

This shape is expected (for CDM) irrespectively of background evolution, neutrino 
mass, etc...

Einstein-de Sitter case

ν2 =
4
3

+
2
7
Ω−1/143
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Flat universe:

The PT review + refs in it
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‣ This is here the general form taken by the second order density 
field

‣ The kernels can be computed recursively...

‣Related observables (cosmic shear, redshift galaxy gatalogues)
Observations are closely related (through projections, shape integration) to the density 
and the reduced velocity divergence power spectra and bispectra

‣ inflation provides us with a compelling framework for the origin of such density 
fluctuations with specific statistics (Gaussian) and spectrum (nearly scale invariant before 
horizon crossing)
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From PSCz catalogue,  Feldman et al. ‘01

k1 ≈ 2k2

k1 ≈ 0.3h/Mpc

The tree order bispectra

‣ A lot is known at tree order

Bδ(k1,k2,k2) = 〈δ(1)(k1)δ(1)(k2)δ(2)(k3)〉 + sym. = F (s)
2 (k1,k2) P (k1) P (k2) + sym.

From FB ‘94

Comparisons of poly-spectra (collapsed 
geometry) with N-body simulations... ... and in observations



• But things get not as nice when one wants to include 
loops
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Not necessarily the best 
way to expand...



A field theory 
reformulation

Scoccimarro ‘97



A reformulation of the theory with a FT like approach

density-div v doublet
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Scoccimarro ‘97

(
δ(k)
θ(k)

)

=
k

g(!) !(k) 
=

k

=
k

= +
k k

‣Diagrams

kk

g(!) !(k) 

k

g(!) !(k) 

kk k
= ++

Φa(k, η) = gab(η)Φb(k, η = 0) +
∫ η

0
dη′gij(η − η′)γbcd(k1,k2)Φc(k1)Φd(k2)

doublet linear propagator

Note : detailed effects of baryons versus DM can be taken into account (Somogyi & 
Smith 2010) with a 4-component multiplet, for neutrinos it is more complicated...



- The observables are (or rather PDF of) expectation values that correspond to ensemble 
averages over the statistics of  “initial” conditions (taken after decoupling).

- The system is not invariant over time translation: it is actually an unstable (non-equilibrium) 
system, where perturbations grow with time (as ~ power-law). The late time behavior of this 
system is probably non trivial and there is no known solution to it.

- Propagator has growing and decaying modes, both play important roles in the
nonlinear regime. For standard (GR) cosmological models the model dependence is entirely 
encoded in the time dependence of the propagators.

- Loop corrections are not due to virtual particle productions but to mode couplings 
effects, modes being set in the initial conditions.

- Vertices have a non-trivial k-dependence but which is entirely due to the conservation 
equation and is independent of the energy content of the universe. Only 2 →1 vertices exist 
(quadratic couplings). This is not the case generically for modified gravity models (like 
chameleon, DGP ...)

- Due to the shape of CDM spectrum, there are no UV divergences (nor IR). Loops, e.g. 
”Renormalizations”, are all finite. 

Not a standard quantum field theory problem...



Time-flow equations         M. Pietroni ’08

Pab(k , η) = gac(η) gbd(η)Pcd(k, η = 0)

+
∫ η

0
dη′

∫
d3q gae(η, η′)gbf (η, η′)

× [γecd(k, −q, q− k) Bfcd(k, −q, q− k; η′)
+ γfcd(k, −q, q− k)Becd(k, −q, q− k; η′)]

Babc(k, −q, q− k; η) =
gad(η)gbe(η)gcf (η)Bdef (k, −q, q− k; η = 0)

+2
∫ η

0
dη′eη′

gad(k , η, η′)gbe(−q , η, η′)gcf (q− k , η, η′)

× [γdgh(k, −q, q− k)Peg(q , η′)Pfh(q− k , η′)
+γegh(−q, q− k, k)Pfg(q− k , η′)Pdh(k , η′)
+γfgh(q− k, k, −q)Pdg(k , η′)Peh(q , η′)]

From the field evolution equation to the 
spectra evolution equation

Exact evolution equation for the power spectra

Approximate evolution equation for the 
bispectra assuming no trispectra



The closure theory

〈
δΦa(k, η)
δΦb(k′, η′)

〉
= Gab(k, η, η′)δDirac(k− k′)

〈Φa(k, η)Φb(k′, η′)〉 = (2π)3δDirac(k − k′) Rab(k, η, η′)

It makes use of the unequal time power spectra 

and of a non-linear propagator.

Taruya, Hiramatsu,  ApJ 2008, 2009
Valageas P.,  A&A, 2007

Then evolution equations for those quantities are derived using the Direct-Interaction (DI) 
approximation in which one separates the field expression in a DI part and a Non-DI part.  At 
leading order in Non-DI >> DI, one gets a set of closed equations, 

These equations can more rigorously be derived in a large N 
expansion.

Mas(k, η, η′′) =

4
∫

d3k′γapq(k− k′, k′)γlrs(k′ − k, k)

×Gql(k′, η, η′′)Rpr(|k− k′|, η, η′′)
Nal(k, η, η′′) =

2
∫

d3k′γapq(k− k′, k′)γlrs(k′ − k, k)

×Rqs(k′, η, η′′)Rpr(|k− k′|, η, η′′)

∂

∂η
Rab(k, η, η′) + ΩacRcb(k, η, η′) =
∫ η

0
dη′′Mas(k, η, η′′)Rbs(k, η′, η′′) +

∫ η

0
dη′′Nal(k, η, η′′)Gbl(k, η′, η′′)

∂

∂η
Gab(k, η, η′) + ΩacGcb(k, η, η′) =
∫ η

0
dη′′Mas(k, η, η′′)Gbs(k, η′, η′′)





The RPT 
reformulation



One key ingredient : the 
propagator
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Scoccimarro and Crocce PRD, 2005



Crocce and Scoccimarro 05
20

‣The dominant contributions can be resommed 
exactly in the high k limit.



‣RPT (Scoccimarro and Crocce) consists in 
standard PT when g    G
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Evolution of baryonic oscillation with RPT M. Crocce, R. Scoccimarro PRD, 2008



Insights into higher 
order propagators



The next thing to look at is 
the vertex ...

‣Towards a complete “renormalisation” of PT ?

What we found is that these are the “p-point propagator” that can be 
“renormalized”
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FB, Crocce, Scoccimarro, PRD, 2008



‣ This suggests another scheme : use the n-point 
propagators as the building blocks
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Sum of positive terms

‣The reconstruction of the power spectrum :



if pij is the number of lines connecting the 
segment (i) to (j)
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‣ It implies that the vertex cannot be “renormalized” (into an 
operator which is local in time)

‣ Calculation of renormalized vertex in high k 
limit



Comparison with numerical simulations
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‣ Re-summation can be extended to any order

In the large k limit we have :
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‣ Non-Gaussian initial conditions

G(k) → exp

[
−
∞∑

p=2

〈(v.k)p〉c
p!

(eη − eη0)p

]‣ In the large k limit we now have :

instead of
G(k) → exp

[
−〈(v.k)2〉c

2
(eη − eη0)2

]

for Gaussian initial conditions.

Crocce, Sefusatti, FB, 2010

‣ The Gamma-expansion is still valid.

FB, Crocce, Scoccimarro, PRD, 2008



• Does it speed up the convergence for the 
reconstruction of P(k) ?

• Also provide the building blocks for higher order 
moments...
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tree order

1-loop order

Application to bispectra

Measuring bispectra
‣ More information (hence better S/N) on mode amplitudes

(all the more when one tries to exploit the quasi-linear or 
nonlinear regime, see Rimes and Hamilton, MNRAS, 05)

‣ Intrinsic shape is a poor measurement of the energy content 
of the universe (e.g. dark energy equation of state) but can be 
used to test gravity



Using large-scale 
structure to test 

gravity



Changing gravity
(Jain, Zhang PRD ’08)

1
H

θ̇(k) + (2 +
Ḣ

H2
)θ(k) +

3
2
Ωm ξ(k, t) δm(k) = ...

There are many ways of doing so...

If the change is such that

fk ≡
d log D+

d log a
= Ωm

γ
(
γGR ≈ 0.55

) standard parameterization (Amendola 
& Quercellini, ’04, Linder ’05, Reyes et 

al. Nature, etc.), 

FB, Brax (in prep)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
Γ

4.84

4.85

4.86

4.87

S 3
"
3Ν
2

GR ‘‘DGP’’

This is still a modest change



In presence of a dilaton field 

This extra field φ that is responsible of massive gravity effects. Its 
effect are suppressed in dense regions through the Chameleon 
mechanism.

A(φ) = 1 +
A2

2
(φ− φ0)2 + . . .

k2(φ) = 3
(

d log A

dφ

)2

+
1
λ2

S =
∫

d4x
√
−g

{
M2

Pl

2
R−M2

Plg
µνk2(φ)∂µφ∂νφ− V (φ)

}
+

∫
d4x

√
−g̃Lm(ψ(i)

m , A2(φ)gµν) ,

V (φ) = A4(φ)V0 exp(−φ)

Brax et al. astro-ph/1005.3735

Veff.(φ) = A4(φ)V0 exp(−φ) + A(φ)ρm

Fi = − 1
a(t)

(
Φ(x, t),i +

d log A

dφ
(φ̄ + δφ)φ(x, t),i

)
A new force term:

Newton potentials, Φ=Ψ with 
standard Poisson equationAn effective potential for the 

dilaton field



Mass of the field at 1 Mpc 
scale

Mass of the field at 3 Mpc scale

Mass of the field at 0.3 Mpc scale



Horizon

log k

lo
g 

a

k = m!

k!kck"kc k=kc

Evolution of structure: from GR to modified 
gravity dynamics

GR
ε=0

Mod. Grav.
ε=Cte



1
H

θ̇(2)+(2+
Ḣ

H2
)θ(2)+

3
2
Ωm(1+ε(k))δ(2)

m = −β(k1,k2)θ2−[SEul.(k1,k2) + SIntr.(k1,k2)] (δ(1)
m )2

A new Euler equation (up to second order)

SEul.(k1,k2) =
(k2.k)

k2
1

a2m2(φ̄)
k2
2

S(k1)η(k2)

SIntr.(k1,k2) =
a2m2(φ̄)

k2
2

S(k)η̃(k2) +
a2m2(φ̄)

k2
1

a2m2(φ̄)
k2
2

S(k1)S(k2)µ(k)

η(k) = S(k)
H2

m2(φ̄)
d(βeff(φ))
k(φ̄)dφ

, η̃(k) = S(k)
H2

m2(φ̄)
d(A(φ)βeff(φ))

k(φ̄)dφ

µ(k) =
S(k)
3Ωm

H2

m4(φ̄)
d3Veff

2M2
Pldϕ3

(negligible inλ→∞ limit)  

(negligible inλ→0 limit)  



Bispectra (equilateral configurations)

- Similar effects (maybe slightly smaller) were found by Chan and 
Scoccimarro in case of the DGP model (where small scale GR is recovered 
through the Vainshtein mechanism). 

Robust features are expected to be seen in large-scale structure observations. 
Changing the strength/form of gravity laws is our best chance to induce significant 
(although mild) changes in the shape/amplitude of the observable bispectra.

1%

10%



Conclusions
• New methods are being developed, still in progress

• RPT, Gamma-expansion, closure theory, time-flow RG, but also with an effective 
fluid approach has been proposed as a possible route to such calculations 
(Baumann et al., '10);

• Which approach is the "best" (if any) is not clear yet;

• Important cross-checks with N-body codes (for various 
models);

• An interesting play-ground for theoretical physicists;

• Maybe our best chance to unambiguously grasp the 
nature of dark energy (in particular through detailed 
analysis of 3-pts functions)


