COSMO/CosPA 2010

The Latest Status and Results of LHC Focusing on the Physics@

S.Asai (U.Tokyo)

Plan of my talk

1.LHC status and plan

- 2. The latest results of QCD+EW Physics
 - (exercise for detector-understanding)
- 3. SUSY hunting (Now and future)
- 4. Higgs perspective
- 5. Extra dimension (If I have time)
- 6. Summary and Conclusion

1. LHC status and plan

Milestones of First 2010

with 3 important parameters and Peak Luminosity.

Date	Achieved		
Mar 30	First collisions at 7 TeV centre of mass.	I	Luminosity ~ 2 10 ²⁷ cm ⁻² s ⁻¹
April 24	First stable beams at 7 TeV, 3 on 3, squeeze to 2m.	>	Luminosity ~ 2 10 ²⁸ cm ⁻² s ⁻¹
May	Increase bunch intensity to 2 10 ^{10,} Increase k _{b.}	ו	Regular physics runs
May 24	13 on 13, 8 colliding pairs per experiment.		Luminosity ~ 3 10 ²⁹ cm ⁻² s ⁻¹
June	Increase bunch intensity to nominal, squeeze to 3.	5m	No physics
June 25	First stable beams at 7 TeV, 3 on 3 nominal bunch.	Luminosity ~ 5 10 ²⁹ cm ⁻² s ⁻¹	
July 15	13 on 13, 8 colliding pairs per experiment, 9 10 ¹⁰ /	Luminosity ~ 1.5 10 ³⁰ cm ⁻² s ⁻¹	
July 30	25 on 25, 16 colliding pairs per experiment, 9 10 ¹⁰	Luminosity ~ 3 10 ³⁰ cm ⁻² s ⁻¹	
Aug 19	48 on 48, 36 colliding pairs 1 5 and 8 (< in 2), 9 10 ¹⁰	Luminosity ~ 6 10 ³⁰ cm ⁻² s ⁻¹	
Aug	Stable running period to consolidate operation and	d MP	~2 MJ per beam !
Aug 26	50 on 50,35 colliding pairs 1 5 and 8 (< in 2), 1.1 10	0 ¹¹ / bunch	Luminosity ~ 1 10 ³¹ cm ⁻² s ⁻¹
	N bunch increased by 10 ⁴	1/10 of firs	t target has been achieved.

384+384 bunch collide : L= 10³² will be achieved with in 2weeks (First target clear) L=30—70 pb⁻¹ will be recorded before end of October It means that L=1fb⁻¹ in the next year is almost(?) guaranteed. (Realistic) Unfortunately Heavy Ion run (Pb+Pb) is planned in Nov.

Plan of the next few years

2011 7-8 TeV L=1fb⁻¹ (L=10³²cm⁻² s⁻¹) Rich discoveries are expected as I will show.
 2012 Technical stop(15months) to repair bad connections between superconducting magnets.
 LHC First Phase Discovery
 There is some discussion to keep physics collision

Higgs/SUSY at 7-8TeV even in 2012 to defeat Tevatron (see Higgs section)


```
2013 E=13-14TeV L=1fb<sup>-1</sup>
```

2014 E=14 TeV L=10fb⁻¹

2015 E=14 TeV L=30fb⁻¹ \rightarrow Move to upgrade of Injection system and Detectors

2. The latest results of QCD+EW

QCD Jet is most popular process in LHC

good exercise of Hadronic response of the detector

Production cross-section are measured as a function of PT:

Lower shows the ratio of data/NLO Pred.

LHC results are consistent with QCD(NLO) prediction for all eta and Pt region.

Main systematic error is jet energy scale ~7% in this summer.

Finally we will control jet energy scale with 1% accuracy.

Using this result, we can set limits on the new physics decaying into 2jets

W→ev PT_W ~ small

Typical performance ϵ (electron)~80% ϵ (muon)~90%

 $Z(\rightarrow \mu\mu)$ + 2jets

e/mu give clear trigger Fake Prob. ~ 10⁻³ – 10⁻⁴ for e and mu (Jet is misidentified as lepton)

W(\rightarrow I v) MT distributions

Well-isolated Lepton (PT>20GeV) & mET is required. Jacobian peak is clearly observed on MT (QCD : fake lepton contributes to small MT region)

14

σ×Br

The measured σ ×Br are listed here (L=0.2pb⁻¹)

Statistical error is 3% even with this lower luminosity (Now we have 40 times) Luminosity has large systematic error now (11%) -> finally reduce to 3-4% Identification efficiency / fake prob. (now we use MC prediction) have also 3-5% systematic error. -> **Now we effort to reduce these systematic errors.** We will show the differential cross-section (PT,eta,Njet...) with the date of O(10pb⁻¹)


```
Using MT distributions,
we can search for W'(\rightarrow lv)
```

We assume W' has the same coupling to SM particles.

Mass [GeV]	Γ(GeV)	В	σ B [pb]
150	3.88	0.1084	1296
200	5.34	0.1054	495
300	9.18	0.0924	109
400	12.98	0.0874	36.8
500	16.68	0.0852	15.5
600	20.34	0.0840	7.6

M(W')>465GeV 95%CL (Tevatron M(W')>1TeV

Next year will take over)

Top quark

 σ (7TeVNLO)=157pb σ (7TeV W -> lnu) = 30nb

W+jets(including b) is the serious background.

This candidate is leptonic decay events: tt->bWbW (W->enu) (W->munu) Clear 2 b jets

We have O(10) candidate events with data of L=0.8pb⁻¹

Top quark is heavy (~173GeV) cross-section is suppressed comparing to 14TeV (σ(14TeV NLO)=830 pb factor 5 suppressed) ¹⁷

3. SUSY hunting (Now and Future)

Event Topologies of SUSY Signal @ LHC

SUSY provides various interesting event topologies !!

"Typical" Events topology of SUSY signal is like this

Gluino/squark are produced first, then cascade decay is followed.

We perform the **"Topology-base"** studies at LHC Promising **event topologies with mE_T** are listed:

Jet multi (high Pt)	Additional obj.	Favored Model	Dominant SM background processes
High Multiplicity Nj>=3,4	No lepton	SUGRA,AMSB, Large m0	QCD(light & bb/cc) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$ \checkmark Z(->nunu) and W(->taunu) + jets
	One lepton	SUGRA,AMSB, Large m0	$t\bar{t}(\rightarrow b\bar{b}q\bar{q}\ell\nu)$ W(->Inu)+jets
	Dilepton,3L	SUGRA,AMSB, GMSB (Nm>1)	OS: $t\bar{t}(\rightarrow b\bar{b}\ell\nu\ell\nu)$ SS,3L ZW,ZZ $t\bar{t}(\rightarrow b\bar{b}\ell\nu\ell\nu)$
	Tau	Large tanβ, GMSB (Nm>1)	W (->taunu) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$
	b	SUGRA, etc	$t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$
	Y	GMSB (Nm~1) $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$	Almost BG Free $t\bar{t}(\rightarrow b\bar{b}evev)$ FSR
Low Multiplicity	No lepton	squark production KK Graviton	Z(->nunu) W(->taunu)
Nj~1,2	One lepton	squark production	$W, Z \qquad t\bar{t} (\rightarrow b\bar{b} \ell \nu \ell \nu)$
No iet	One Lepton	W'	W
Nj = 0	Dilepton,3L	Direct $ ilde{\chi}$	WW,WZ,ZZ WZ main for 3L

Promising Discovery channels, Today I show three results

mE_T is key for SUSY hunting, but mE_T is not so easy variable

Basically $mE_T = -\Sigma E_T(Calorimeter) -\Sigma P_T(muon)$

(1) Noise of Calorimeters are crucial.

Remove noise clusters using cluster shape and pulse shape.

- (2) Cosmic ray: Bremsstrahlung from cosmic muon
- (3) Beam halo

These non-physics tails are removed at first.

Benchmark Point for very early stage of SUSY analysis

This point is called as "SU4" in my talk.

 m_0 =200GeV m1/2=160GeV Just Above of CDF limit gluino ~ 410GeV squark~410GeV slepton~210GeV ch1 ~ 113GeV nu1(LSP) ~ 61GeV σ = 60 pb (7TeV)

DM –inspired region (0.09 < $\Omega x h^2$ < 0.13) This SU4 is not just toy point. It is also possible point for DM business.

[1] One lepton + multijets +mE_T topology

- Pt lepton > 20 GeV
- 2 or more jet with Pt>30 GeV eta <2.5
- MT >100 GeV
- mEt > 30 GeV

• 100GeV (Leading) 50GeV

→ 100GeV

At that time Luminosity is too small to search for SU4.

We have data with L=3pb⁻¹ at end of August. Let's Image the scale is multiplied by factor 40. We have already have sensitivity for SU4.

μ⁺ Pt = 25 GeV eta=2.33
mEt = 118GeV
Meff (all 3 jets + μ + mET) =1156 GeV
BUT MT=33GeV

My interpretation is W+multijets

multijets +mET topology (No lepton mode)

- P_{T} leading jet > 70GeV
- At least 3 jet with Pt>30 GeV eta <2.5
- $mE_T > 40 \text{ GeV}$
- $\Delta \phi$ (jet, mET) > 0.2 •mET/(Σ PT+mET) > 0.25

- \rightarrow 100GeV (In Future)
- \rightarrow 50 GeV
- → 100GeV

tt and W+jets, in which W decays into tau, are dominant BG after $\Delta \phi$ is required.

No excess (No event) was observed. This channel is most important when statics of data is limited.

multijets +b-jets + mET topology (b-jet mode)

- P_T_leading jet > 70GeV
- At least 3 jet with Pt>30 GeV eta <2.5
- At least one good b-jet in the jets
- mEt $> 2\sqrt{\Sigma}$ ET
- $\Delta \phi$ (jet, mET) > 0.2

Branching fraction including b-quark is expected to be higher.

All distributions are consistent with SM prediction, and no excess was observed.

Now we have data of L>3pb⁻¹, (10 times higher than this plot)

Candidate event of multijet+b+mET

Prospect at end of 2011 and after

Strategy of searching for Long-lived particles

- (1) Heavy charged particles (GMSB stau, R-hadron)
 (1A) dE/dx energy loss in the semiconductor ,
 (1B) TOF information in muon system (β< 1)
- (2) Decay in flight (AMSB wino, GMSB stau)Kink/Disappearing track in the continuous tracking system (ATLAS)
- (3) stau and R-hadron(both neutral and charged) stop in the dense material (Hadron calorimeter) dedicated trigger is necessary to catch decay.

Ionization energy loss dE/dX $\sim 1/\beta^2$ We can use this information to search for heavy stable particles.

No event was observed in L=198nb⁻¹ and M(gluino) > 284GeV (95%CL)

(2) Continuous Tracking System in ATLAS

TRT (Transition Radiation Tracker)

Drift Tube chambers are installed at R=0.5—1m from beam pipe Real Data

Track can be reconstructed continuously.

See S.Asai, T.Moroi, Yanagida... PLB 672(P.339), 664(P.185) 653(P81)

(3) Stop in Calorimeter

- (1) charged heavy particles (stau, R^{+-} ) loss kinetic energy dE/dx ~ $1/\beta^2$ Emitted particles with small β stop in dense material (Hcal) -> about 5% will stop (stau case -> See PRL 103:141803(2009) Asai, Hamaguchi,)
- Neutral Hadron (R-hadon) case -> strong interaction there is large systematic error (2)

Stop particle decay with $\tau = 10^{-7} - 10^{10}$ sec , single cluster will be observed in Hcal. Dedicated trigger has been introduced in CMS (empty bunch is used: good for high rate case) In PRL, beam dump is proposed (good for low rate case).

4. Higgs in Future

Cold war between LHC and Tevatron is on-going

Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$

Next year it becomes hot war.

The same plots (but just simulated) for ATLAS and CSM with 1fb⁻¹ at 7TeV

ATLAS has sensitivity >135GeV and CMS > 145GeV Region In the SUSY models, Higgs < 130GeV is promising. More harder work is necessary for us

Just roughly estimation

(1)	Add VBF H->tautau,	WH->bb(boosted)	gain	~5GeV
(2)	Combine ATLAS with	CMS	gain	~5GeV
		(if CMS has	the same	sensitivity)
(3)	LHC is operated at 8Te	eV	gain	~5GeV

We have a potential to examine H > $^{-120}$ GeV (8TeV L=1fb⁻¹ A+C)

Do not forget to check "Higgs news" even in the next year.

With L=10fb⁻¹ at 14TeV(2014)
Both ATLAS and CMS have the 5σ discovery potential for all mass range of the SM Higgs

5. Extradimension search based on Event-Topology

There are various models and predictions about ED We categorize the following event topologies.

(1) High mass lepton pair (II and I ν) (KK Graviton Z',W')

(2) Large mET +single jet (Monojet)

(ADD Graviton)

(3) High Pt jet, High mass jets
 (KK Graviton, contact interaction)
 -> both resonance or non-resonance (See QCD section for resoance)

(4) small mET +jets (SUSY-like signal but small mET) (UED)

(5) High Pt, High mass diboson / high mass top pair (KK Graviton and KK gluon)

(6) High mass & High PT multi-object (mini-blackhole, String ball) more complicated

High P_T & High mass multi-object

Hawking Radiation of mini-BH or Multibody decay of String Ball.

Data is consistent with SM prediction and 95%CL upper-limit of σ is 0.34nb

Summary and Conclusion

- 1. LHC is in good operation and will achieve "the first target" soon (L=10³²cm⁻²s⁻¹)
- 2. We expect the data of 30-70pb⁻¹ in this year and 1 fb⁻¹ in the next year.
- 3. Detectors work well and have good performance.
- 4. Our studies are based on the Event-topologies. Exotic topologies are also covered for SUSY.
- 5. SUSY searches with the mE_T (also dijet resonance search) exceeds already to Tevatron/LEP.

LHC starts to explore the unknown TeV-world.

- 6. DM-inspired SUSY will be covered in 2011(bulk) or at least before 2014. -> Not specific models.
- 7. Higgs also at least before 2014. Keep watch even in the next year.
- 8. Now no excess is observed except for "Ridge" observed at CMS

Backup slides

(おまけ)

9.19 Accident (2008)

 There are "Bad connections" in the Cupper bar between Magnet-units. (I will mention detail later)

- When the superconducting magnet is quenched, current passes though this cupper bar.
 But temperature goes up quickly due to the bad connection, then L.He boils up.
- 3. Totally 53 Magnets have been destroyed.

 $\sigma * Br$ for Z boson

3-2 Background estimation with Real data

Summary of background estimation with Real data ("No-lepton mode")

The background distributions are very stable against input parameters, also stable for various generators(ALPGEN/MC@LO/Sherpa), just normalization is different.

Shape of the distributions are insensitive to the input parameters of the Generator (Alpgen+Jimmy).

The normalization of the distributions is affected by these uncertainties.

They have the same diagram -> this normalization factor is common to W/Z

One-lepton mode / OS-dilepton mode

Top -pair is dominant background process for these modes: We have good control sample of top-pair itself (one lepton& MT<100GeV)

質量の再構成に関して

- 1. 適当なdecay chainを選ぶ (key point!) (奇麗か? 他のSUSY Decay chain? 長いか?)
- 2. mass やP_Tなどのkinematic distributionを作る
- 3. Edgeやendpointからmassの関係に束縛を与える

4未知数 vs 4条件 → model independentに massが決まる。(3-12%程度 L>100fb⁻¹ for 700-800 GeV squark, gluino)

DMを決める

			Frros		1 M	odelを
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total		
mmax	77.07	0.03	0.08	0.08	1 分	而のed
max	428.5	1.4	4.3	4.5		
miow	300.3	0.9	3.0	3.1		
mhigh mea	378.0	1.0	3.8	3.9		
mmin	201.9	1.6	2.0	2.6		
m min Hb	183.1	3.6	1.8	4.1		
$m(\ell_L)-m(ilde{\chi}^0_1)$	106.1	1.6	0.1	1.6		
$m_{\mathcal{U}}^{max}(ilde{\chi}_4^0)$	280.9	2.3	0.3	2.3		
m ^{max} _{TT}	80.6	5.0	0.8	5.1		
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4		
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9	12	1200
$m(\tilde{g}) - m(b_1)$	103.3	1.5	1.0	1.8	l le	
$m(\tilde{g}) - m(b_2)$	70.6	2.5	0.7	2.6	j	(a)
41					Exp	
10		http	://dmtools.brow	n.edu/	Į.	1000
	N	Gait	 skell,Mandic,Fi	lippini	d	-
	N				Z	0 h
						800
				1		-
10-42	\sim					-
10						(00
						000
	_		1.1			[
<u> </u>			11			
			1 / C			/00
· []					DATA liste	400
10-43			< =		Edelweiss, 3	
· 10					ZEPLIN II (
	and the second sec				CDMS (Soi	200 -
					XENON10	200
					Ruiz de Aus	/
			2	CXX	Baltz and G	
					070416013112	
10-44 070416013112 .						0.17 0.175 0.18
$10 - 10^{1}$		102			3	
10		10		10		
	WIMP	Mass [Ge]	V]			•
		-	-		Red	っil 実販
					±	旦虹マ

反定

ge \rightarrow parameter \rightarrow

 $\Omega_{\chi}h^2 = 0.1921 \pm 0.0053$ $\log_{10}(\sigma_{\chi p}/\text{pb}) = -8.17 \pm 0.04$

DM particle mass m_{χ} (GeV)

LHCの能力がモデルに著しく依存したSUSYしかカバーできないか?

生成過程は ただのstrong interaction. Gluino,squarkの massだけでほとんど 決まる。Cross-section はmass countur

LSP mass (GeV) for Gluino mass 1TeV

一方崩壊の違いによる
Efficiencyの違いは小さい。
効くのは、LSPとのmass differenceが主:
ΔM(coloured vs LSP)=400GeVくらいまでは
安定
300GeVくらいから急激に小さくなる。
mET分布がきつくなる。

ΔMが極端に小さく(300GeV)なるようなことが 起きなければ、LHCでしくじらない。 Gluino,squarkのmassだけで決まる。

CMSの話

http://indico.cern.ch/conferenceDisplay.py?confld=107440

をみてね

Au+Auをぶつけると イメージとして熱い液体になって中でいろいろな 振動がぶつかり方で出来る。その"ジオメトリー"効果で 粒子の出る方向が phase spaceからずれる

PYTHIA p+p 200 GeV

RHICではd+Auでも見えない

Phys.Rev.C80:064912,200

この原因は不明であるが、QGP関係の何かで諸説紛々

- Coupling of induced radiation to longitudinal flow
 Armesto et al., PRL 93, 242301
- Recombination of shower + thermal partons Hwa, arXiv:nucl-th/0609017v1
- Anisotropic plasma

Romatschke, PRC 75, 014901

Turbulent color fields

Shuryak, arXiv:0706.3531v1

- Bremsstrahlung + transverse flow + jet-quenching Majumder, Muller, Bass, arXiv:hep-ph/0611135v2
- Splashback from away-side shock

Pantuev, arXiv:0710.1882v1

Momentum kick imparted on medium partons

Wong, arXiv:0707.2385v2

Glasma Flux Tubes

Dumitru, Gelis, McLerran, Venugopalan, arXiv:0804.3858; Gavin, McLerran, Moscelli, arXiv:0806.4718

Currently most compelling explanation is **geometrical fluctuations**, not dynamical ones

ちなみに 反対側(far side)のη依存性はPPもあって これは昔からしられている。

直感的に、パートンのイメージがでてくると増える気がする

Track efficiency 80-90(eta<1.5) % PT>1GeV

2粒子相関R

$$R(\Delta \eta, \Delta \varphi) = \left\langle (N-1) \left(\frac{S_N(\Delta \eta, \Delta \varphi)}{B_N(\Delta \eta, \Delta \varphi)} - 1 \right) \right\rangle_N$$

So
$$\Delta \eta = \eta_1 - \eta_2$$
$$\Delta \varphi = \varphi_1 - \varphi_2$$

5E10コリジョンで 354K事象選んだ <-> ATLASで1000倍違う data量はL=940nb ^-1

N>110を要求すると、back-to-back構造がみえる。 QCDの事象が enhanceしている

 p_{T} -inclusive two-particle angular correlations in Minimum Bias collisions

ここまでは、MBやQCDの話

N>110(3>PT>1GeV) にすると Ridgeがみえる。 **P+Pなのに!!**

New "ridge-like" structure extending to large $\Delta \eta$ at $\Delta \phi \sim 0$

勉強になります

PT>3GeV以上いれると弱くなる。 N>110が一番つよく見える

電荷は関係ない。 same sign も opposite signも同じ

No dependence on relative charge sign

検出器効果でない (ϕ 対称、 ridgeの事象は特別なetaにいない)

なんなんでしょう?

ほんとうに trigger バイアスないのかな?

Rigdeは QGPでなく soft QCDの話ってこと になるよね。