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Introduction Motivations
Anisotropic extensions of inflation

Statistical isotropy

@ Inflation typically ends on a homogeneous/isotropic
universe if it lasts long enough.
= Statistical distributions are isotropic.

@ Assumption of statistical isotropy < power spectrum P(|f€|)

oT
i = Z arm Yim (@rm a;m,) = Co0p Smmr

@ Nonstandard signatures from an early anisotropy may
remain at observable scales, if duration of inflation is
minimum. Signature:

P(k) = (a@m a;’m’> FKOper Oy AEG, Contaldi, Peloso 2006
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Introduction Motivations
Anisotropic extensions of inflation

Statistical anisotropy in the data?

@ ¢ = 2,3 are aligned and planar. Tegmark et al. 2003

de Oliviera-Costa et al. 2004

@ Explanation: Systematics? Astrophysical sources? Statistical fluke?

@ Cosmological Source? An anisotropic stage of inflation could lead to
anomalous alignment of low multipoles.

@ ACW parametrization:

P(K) = Puo(K) [1 + g (k) (K - )?]
Tested with WMAPS5: g, = 0.15 £+ 0.039 Groeneboom, Eriksen 2008
@ Effect extends to ¢ ~ 400.
@ Missing factor. Hanson, Lewis 2009
= Refined analysis: g. = 0.29 + 0.031. Groeneboom et al. 2009

@ Axis of anisotropy aligned with ecliptic poles: Coincindence that favors
astrophysical or systematic source.

@ Increase of sensitivity in Planck. Pulklcn, Eementemsl 200l
@ g. can still be used as a criterion for discriminating inflation models.
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Introduction Motivations
Anisotropic extensions of inflation

Anistropy + Inflation

Initial geometry?

@ Scalar field in an initially homogeneous and anisotropic
background. The formalism of linear perturbations
constructed only recently. o e s

Perreira et al. 2007
@ Cosmic no-hair conjecture: Homogeneous and anisotropic
universe with cosmological constant
= Quick isotropization within a Hubble time. Wald 1983

@ If isotropic inflation lasts the minimum amount, the largest
scales may carry signatures from a previous anisotropic
stage
= Duration needs to be tuned.

No sustainable anisotropy, tuned initial conditions
= Way out: Include vector fields (with VEV = 0) to source the
anisotropy.
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Introduction Motivations
Anisotropic extensions of inflation

Anistropy + Inflation

@ Massless vector field with standard kinetic term F,, F** —
quick isotropization. Need to modify the action:

Vector fields?

@ Potential for the vector field = V(A,A*) Ford 1989
o leed nOI’m VeCtOI’ :> )\ (A'LLAN - V2) Ackerman, Carroll, Wise 2007
© Nonminimal coupling = ¢ RA, A" Golovnev et al.

2008

Kanno et al. 2008

Chiba 2008

Dimopoulos, Karciauskas 2008

Q Kinetic coupling = f(¢)? F,, F* Watanabe ot al. 2009

@ Cases 1-3 have broken U(1) symmetry = Resulting
longitudinal vector is a ghost leading to instabilities.

Himmetoglu, Contaldi, Peloso 2008--2009
@ Case 4 = U(1) conserved = no problematic longitudinal
mode, no instability. Hinmetoglu 2010
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Background
Signatures from anisotropic inflation Perturbations/Results

Anisotropic inflation: Background

@ Action:
S= /dsx, /=g
@ Vector field VEV aligned with x—axis.

<AH> = (07 A (t)v 0, 0)

@ Background geometry: Axisymmetric Bianchi-I

Watanabe et al. 2009

M 1 1 .
o A= 50u0"6 = V() = 7 £(4)° Fuv F ]

ds® = —df* + a(t)? &x® + b(t)° [dy? + d7’]

° V(¢)=F¢
@ Slow roll + Small anisotropy = pa ~ constant if

f(8) = exp {2 ¢ ] . compatible with

M2 isotropic attractor
Mz P
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Anisotropic inflation: Background

@ Action:
S= /dsx, /=g
@ Vector field VEV aligned with x—axis.

<AH> = (07 A (t)v 0, 0)

@ Background geometry: Axisymmetric Bianchi-I

Watanabe et al. 2009

M? 1 1 .
TDR_ 58”8“45— V(¢) - 4 f(¢)? Fuw F* ]

ds® = —df* + a(t)? &x® + b(t)° [dy? + d7’]

° V(¢)=F¢
@ Slow roll + Small anisotropy = pa ~ constant if

2 c=1
f(¢) =exp |2 c% -— 'compalt/b/e with
ol isotropic attractor

@ With ¢ 2 1 = growing anisotropy.
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Anisotropic inflation: Background

2
Example: V = 1 ¢2, f(¢):exp[°"’ ] A—Min:m*m, bin=18My, c=2

2 M2
pl
L0 0.500
o 8 0.100
g T 0.050
el 040@ =
= =
= 0.010
S B
-0.5 t 0.005
-1.0 0.001
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&/ My, e—folds

@ Isotropic slow roll = 3H ¢ = —m? ¢

_me

@ Anisotropic slow roll = 3 H ¢ = — ™
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Anisotropic inflation: Perturbations

Physical degrees of freedom

o DOF 09w = 10
o ®
A, = 4

@ Gauge Xt — xt 4 = —4 @ e

(5A# — 6A# + 8#04 == —1 physical

@ Nondynamical g0, = —4 degrees

5A0 = —1

@ Isotropic case: Spherical symmetric background
= All three degrees decouple

@ Symmetry under rotations around x—axis

— Two decoupled subsets @
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Anisotropic inflation: Perturbations
Decomposition of perturbations: AEG, Himmetoglu, Peloso 2010
—2¢ aodxx b(9;B+ B;)
8Guy = —22°V abox <8,'B+ B,)

b? [72 25,'/' +2 E’,‘j + E(;’j)]
6A, = (8Ao, A1, BiSA+6A) , 66
@ Gauge = Keep nondynamical modes, set B=% = E = E; = SA=0.
@ Integrate these out using the constraint equations.
Quadratic action, formally

i Vi
S® =1 [ atd®k [YS Ys— YT Q2 Ys} . Ys=| Hs

S® =1 [dtd®k [YVWV —vio2 Yv] A
2 Ay

@ After isotropization: Vy — v, Hy — hy, Hx — hy; 0% = diagonal .
@ Q% = Nondiagonal, time dependent = Scalar-Tensor correlation.
@ Deep inside horizon (H < p) = Q2, Q% ~ p?1 + O(H).
=- Eigenvalues/vectors evolve adiabatically. Well defined vacuum.
Quantization of coupled bosons <= nitles et a1. 2001

- COSMO/CosPA 2010 Phenomenological Signature from Anisotropic Inflation



Background
Signatures from anisotropic inflation Perturbations/Results

Anisotropic inflation: Results

Spectra for V = 1 m? ¢2,

Ph,n, (My/m)?
2
Prr (My/m)

L L L L L L 10'24 10'22 10'20 10'18 10'16 10—14 10—12 10'10
10 102 102 10%® 10" 10 10" 107 Kk
a Kk

@ (hihy) and (hy hy) are nearly identical.
Angular dependence mild.

@ Even very small ¢ — 1 gives a noticeable
angular dependence to (RR). Slightly larger
power than standard (¢ = 1) case.

1 @ Characteristic (Rhy) signal is smaller than
e diagonal correlators.

o
o

Prn, (Mg/m)*

=4
Q
2

Results in agreement with

Dulaney, Gresham 2010 -- Watanabe,

0.001

10"14 10“12
Gilimriikglioglu - COSMO/CosPA 201
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Kanno, Soda 2010
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Anisotropic inflation: Results

We fit the R spectrum to ACW parametrization

P(K) = Puo(k) [1+ 9. (K) €]
10*
10°
@ ACW parametrization is accurate
. = g. independent of direction.
10" F E|
@ AH/H ~ O(107°)
= g:| ~O(107").
102 ¢ c.1=18;§ — 1 Very different magnitudes.
c-1=1
c1=107 @ For all ¢ values = g. < 0.
-y -t =10 --- ) . . .
10-24 10-22 10-20 10»18 10-16 10-14 10-12 10-10

/K«
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Anisotropic inflation: Conclusion

@ Carried out a complete phenomenological study of a stable
model with sustainable anisotropy.

@ Resulting anisotropy signature has an opposite sign than
the observed value.

@ Consequence of broken 3D rotational symmetry
= Time evolving, nondiagonal mass matrix for the modes.
Characteristic signature = Nonzero scalar-tensor
correlator.
For this model, too small to be interesting.

@ Nevertheless, provides the tools for future studies which
can reproduce the WMAP feature or lead to new
predictions.
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EXTRA SLIDE: Background evolution

@ Equation for A; solved analytically. Remaining equations

2 1(a b

D A T
2 2 1 ¢? PA 1 (b a

OH+3H +31 = e (?+V(¢)7§) =1 (b_a)
; SRV f'(¢) 2
+3Hp+ V 2 __ Pa
R (© 2 o= SRR

h+3hH=-=_

SMglpA

@ Isotropic limit po — 0, h— 0
@ Slow roll + Small anisotropy = pa ~ constant if

c=1
< compatible with
isotropic attractol

@) =0 [ V’(qs

@ With ¢ 2 1 = growing anisotropy.
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EXTRA SLIDE: Definition of spectra

(A(t,X) B(t, )+ B(t, y) A(t, X)) =

/% /01 d¢ cos(kér)do (kmﬁ) Pas

1
2

% sin k(l;r) Pag  (isotropic limit)
where
no= |p-F-7)|
mo= JF-7 [ 7P
& = k-n
and
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EXTRA SLIDE: Coupled systems

(Examples

@ For cosmological perturbations,
3D rotational symmetry = Decoupled fields
Relaxing the symmetry = Coupling

AEG, Contaldi, Peloso 2007
@ Preheating mechanism can play a key role in decay of
SUSY flat directions.
D—term potential = Coupling between scalar fields.

Olive, Peloso 2006
y

In these examples, frequency matrix is nondiagonal and time
evolving = coupled mode functions
o d®*k  ikx PN sty T
6.0 = [ 755 ¢ [wn0 &R + i 1.0 8 ()
We use the generalized Bogolyubov formalism for quantization
of such systems. Nilles, Peloso, Sorbo 2001
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EXTRA SLIDE: Quantization of coupled bosons

1 Nilles, Peloso, Sorbo 2001
S=3 /d3kd77 (¢'T¢ — o1 Q2% 9)
@ Nondiagonal, time dependent frequency matrix:
¢1%¢ = (9" C) (CT Q% C) (CT 9)
N N e N —

Tt o 7
[ Ydiag O

@ Kinetic Mixing: ¢'t¢/ = @'t ¢/ +¢'TTo+ oI 't + 6t C'TC ¢

(r=Cc’o)
R 1 —[ftwdf iftwdt 3. I *AT —_)
qu,f[ 2w<e A+e B,)]a/(k)Jf[ lj a4 (=k)

i

! B
(Bogolyubov Matrices)
aot —p*pT =1, apf—p*a’=0
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EXTRA SLIDE: Quantization of coupled bosons

on=r@.a (5 5 (5 0)(55) (%)

o> o

@ Time dependent annihilation/creation operators: (

)

\/arﬁjtﬁr\/a
\/arﬁfﬁr\/a

Hermitian: Particle production.

H = wj E),T E);.
@ Occupation numbers: Ni(t) = (b b)) = (5* 57)
@ Equations of motion:
o = (—iw—l)a+(%—J)ﬂ | =
B = (lw-NB+ (L -J)a J =
= (8-
Anti-Hermitian: Rotate produced
states. Preserves total N(t)

i

NI= =

@ Adiabaticity condition

W’ 1 1 w’ 1 1
F-2 ), - = (-ar)], <
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