Fingerprinting dark energy: observational tests

Domenico Sapone Universidad Autónoma de Madrid Departamento de Física Teórica – IFT-CSIC

Outline

I) dark energy phenomenology

- what can we measure?
- what should we be looking for?

II) perturbations in de

- what are they?
- · (how) can we see them?

measuring dark things (in cosmology)

That is what we measure

<u>That is what we measure</u>

measuring dark things (in cosmology)

Einstein eq. (possibly effective):

given by metric:

- H(z)
- $\Phi(z,k), \Psi(z,k)$

- inferred from lhs
- obeys conservation laws
- can be characterised by:
 - p = w(z) p
 - $\delta p = c(z,k) \delta \rho, \pi(z,k)$

CD1:

there are infinite models which can give the same expansion history

$$w(z) = \frac{H(z)^2 - \frac{2}{3}H(z)H'(z)(1+z)}{H_0^2\Omega_m(1+z)^3 - H(z)^2}$$

CD1:

there are infinite models which can give the same expansion history

$$w(z) = \frac{H(z)^2 - \frac{2}{3}H(z)H'(z)(1+z)}{H_0^2\Omega_m(1+z)^3 - H(z)^2}$$

CD2:

modified matter can always mimic modified gravity

CD1:

there are infinite models which can give the same expansion history

$$w(z) = \frac{H(z)^2 - \frac{2}{3}H(z)H'(z)(1+z)}{H_0^2\Omega_m(1+z)^3 - H(z)^2}$$

CD2:

modified matter can always mimic modified gravity

$$X_{\mu\nu} = -8\pi G T_{\mu\nu}$$

CD1:

there are infinite models which can give the same expansion history

$$w(z) = \frac{H(z)^2 - \frac{2}{3}H(z)H'(z)(1+z)}{H_0^2\Omega_m(1+z)^3 - H(z)^2}$$

CD2:

modified matter can always mimic modified gravity

$$G_{\mu\nu} = -8\pi G T_{\mu\nu} - Y_{\mu\nu}$$

Martin Kunz and DS, PRL.98:121391 (2007)

Luca Amendola, Martin Kunz & DS, JCAP 0804:013 (2008)

Luca Amendola, Martin Kunz & DS, JCAP 0804:013 (2008)

some model predictions

de perts.

$$k^2\phi = -4\pi G a^2 Q \rho_m \Delta_m \quad \psi = (1+\eta)\phi$$

scalar field:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{1}{2} \partial_\mu \phi \partial^\nu \phi + V\left(\phi\right) \right)$$

one degree of freedom: $V(\phi) \iff w(z)$ therefore other variables fixed: $c_s^2 = 1$ and $\pi = 0$

-> $\eta = 0, Q(k >> H_0) = 1, Q(k \sim H_0) \sim 1.1$

(naïve) DGP: compute in 5D, project result in 4D

Lue, Starkmann 04 Koyama, Maartens 06 Hu, Sawicki 07

scalar-tensor:

Boisseau, Esposito-Farese, Polarski, Starobinski 2000, Acquaviva, Baccigalupi, Perrotta O4

$$\mathcal{L} = F(\varphi)R - \partial_{\mu}\varphi\partial^{\mu}\varphi - 2V(\varphi) + 16\pi G^{*}\mathcal{L}_{\text{matter}}$$
$$\eta = \frac{F'^{2}}{F + F'^{2}} \qquad Q = \frac{G^{*}}{G} \frac{2(F + F'^{2})}{2}$$

 $FG_0 2F + 3F'^2$

Luca Amendola, Martin Kunz & DS, JCAP 0804:013 (2008)

First short summery

- We can always reconstruct an effective, phenomenological dark sector model.
 At first order perturbation level, we need always 2 new functions (plus w or H). → fingerprint of DE / MG model
- You DO specify these 2 functions as soon as perturbations are relevant!

'analytic' dark energy

(DS & M. Kunz PRD80, 083519 (2009), DS, M. Kunz and L. Amendola, arXiv:1007.2188)

Fingerprinting scalar field: w ~ arbitrary, $c_s^2 = 1$ and $\pi = 0$

-> generalization c_s ~ arbitrary const but also -> w ~ const

Whenever we are dealing with de perts:

-> two scales:
1) horizon scale k = aH
2) sound horizon scale c_sk = aH

 $H^2 = H_0 \Omega_m a^{-3}$, $\Phi = constant$, $\delta_m \sim a$

 $H^2 = H_0 \Omega_m a^{-3}$, $\Phi = constant$, $\delta_m \sim a$

$$\delta = \delta_0 \left(1 + w \right) \left(\frac{a}{1 - 3w} + \frac{3H_0^2 \Omega_m}{k^2} \right)$$

$$\delta = \frac{3}{2} \left(1 + w \right) \frac{H_0^2 \Omega_m}{c_s^2 k^2} \delta_0$$

 $H^2 = H_0 \Omega_m a^{-3}$, $\Phi = constant$, $\delta_m \sim a$

$$\delta = \delta_0 \left(1 + w \right) \left(\frac{a}{1 - 3w} + \frac{3H_0^2 \Omega_m}{k^2} \right)$$

$$\delta = \frac{3}{2} \left(1 + w \right) \frac{H_0^2 \Omega_m}{c_s^2 k^2} \delta_0$$

w = -0.8 c = 0.1 k = 200Hcausal horizon sound horizon radiation omitted

 $H^2 = H_0 \Omega_m a^{-3}$, $\Phi = constant$, $\delta_m \sim a$

$$\delta = \delta_0 \left(1 + w \right) \left(\frac{a}{1 - 3w} + \frac{3H_0^2 \Omega_m}{k^2} \right)$$

$$\delta(w=-0.8) < 1/20 \delta(w=0)$$

$$\delta = \frac{3}{2} \left(1 + w \right) \frac{H_0^2 \Omega_m}{c_s^2 k^2} \delta_0$$

w = -0.8 c = 0.1 k = 200Hcausal horizon sound horizon radiation omitted

$k^2\phi = -4\pi Ga^2 \left(\rho_m \Delta_m + \rho_{DE} \Delta_{DE}\right) = -4\pi Ga^2 Q\rho_m \Delta_m$

$k^2\phi = -4\pi Ga^2 \left(\rho_m \Delta_m + \rho_{DE} \Delta_{DE}\right) = -4\pi Ga^2 Q\rho_m \Delta_m$

$$Q - 1 = \frac{1 - \Omega_{m_0}}{\Omega_{m_0}} \frac{1 + w}{1 - 3w} a^{-3w} \le 0.2a^{-3w}$$

$$k^2\phi = -4\pi Ga^2 \left(\rho_m \Delta_m + \rho_{DE} \Delta_{DE}\right) = -4\pi Ga^2 Q\rho_m \Delta_m$$

$$Q - 1 = \frac{1 - \Omega_{m_0}}{\Omega_{m_0}} \frac{1 + w}{1 - 3w} a^{-3w} \le 0.2a^{-3w}$$

subhorizon: Q-1 suppressed by a power more -> k dependence

$$k^2\phi = -4\pi Ga^2 \left(\rho_m \Delta_m + \rho_{DE} \Delta_{DE}\right) = -4\pi Ga^2 Q\rho_m \Delta_m$$

$$Q - 1 = \frac{1 - \Omega_{m_0}}{\Omega_{m_0}} \frac{1 + w}{1 - 3w} a^{-3w} \le 0.2a^{-3w}$$

 10^{-4} 10^{-7} $\frac{1}{0}$ 10⁻¹⁰ 10⁻¹³ 10^{-16} 0.01 10^{-5} 10^{-4} 0.001 0.1

a

subhorizon: Q-1 suppressed by a power more -> k dependence

> CAMB: w=-0.8 $k = 200H_0$ $c_s^2 = 0.1$ $c_s^2 = 1$ s.h. $c_s^2 = 1$ s.h. $c_s^2 = 0.1$

impact on observational quantities

- with Q we evaluate DM with DE perts -> $\phi \neq \text{const}$ but still in MDE
- DM does not have s.h. but now the growth depends on whether or not DE has it just because φ depends on it! -> P(k) and γ change

P(k) is enhanced by a few % outside sound horizon.

Everything is now scale dependent!

$$A^{2} = \left\{ \frac{d(G(a,k)Q(a,k))/da}{dG(a)/da} \right\}^{2}$$

sensitivity to sound speed

k [h/Mpc]

redshift dependence differs: RSD stronger at low redshift

can we see the DE sound horizon?

two large surveys to $z_{max} = 2, 3, 4$ fiducial model has w = -0.8 \rightarrow only if $c_{s} < 0.01$ can we measure it! (for w = -0.9 we need $c_{s} < 0.001$)

P(k) + WL				
c_s^2	σ_{w_0}	$\sigma_{c_s^2}/c_s^2$		
10^{-5}	0.00639	0.15		
10^{-4}	0.00581	0.41		
10^{-3}	0.00547	0.87		
10^{-2}	0.00531	2.48		
10^{-1}	0.00528	14.79		
1	0.00524	22.05		

what do we see?

We can turn off certain contributions and check how the errors change:

- **ISW**: driven by \mathbf{Q} (direct DE contribution to Φ)
- WL: driven by \mathbf{Q} (direct DE contribution to Φ)
- P(k): high contributions shape \rightarrow of P(k) [but not enough]

low $c_s \rightarrow mostly RSD$ and growth

conclusions

- linear perturbations: w + 2 new functions
- provide a fingerprint for DE / MG
- \cdot need to be included correctly in data analysis (as soon as you go beyond ΛCDM)
- will be difficult to measure! E.g. we can only see perturbations in 'cold dark energy'
- how to best parametrise extra d.o.f.?
- how to deal with non-linear scales?
- more discussions on cs after