27 or 30 september 2010 COSMO 2010 - Tokyo

Gamma ray and cosmological **constraints on DM** with large annihilation cross section

Marco Cirelli (CERN-TH & CNRS IPhT Saclay)

in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (Saclay) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN)

0808.3867 [astro-ph] Nuclear Physics B 813 (2009) JCAP 03 009 (2009) Physics Letters B 678 (2009) Nuclear Physics B 821 (2009) JCAP 10 009 (2009) 0912.0663 and work in progress 27 or 30 september 2010 COSMO 2010 - Tokyo

Gamma ray and cosmological **constraints on DM** with large annihilation cross section

Marco Cirelli (CERN-TH & CNRS IPhT Saclay)

in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (Saclay) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN)

0808.3867 [astro-ph] Nuclear Physics B 813 (2009) JCAP 03 009 (2009) Physics Letters B 678 (2009) Nuclear Physics B 821 (2009) JCAP 10 009 (2009) 0912.0663 and work in progress

27 or 30 september 2010 COSMO 2010 - Tokyo

Why large annihilation cross section ?

Marco Cirelli CERN-TH & CNRS IPhT Saclay

A. Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (Saclay) F.Iocco (Saclay + IAP Paris) P.Serpico (GERN)

0808.3867 [astro-ph] Nuclear Physics B 813 (2009) JCAP 03 009 (2009) Physics Letters B 678 (2009) Nuclear Physics B 821 (2009) JCAP 10 009 (2009) 0912.0663

positron fraction

antiprotons

electrons + positrons

Are these signals of Dark Matter?

positron fraction 30% 10⁻¹ 0.1 PAMELA 08 BESS 95+9 $+e^+$) in GeV²/cm² s sr 10% 0.0Wizard-MASS 9 anti-proton flux $[1/(m^2 \sec \operatorname{sr} \operatorname{GeV})]$ CAPRICE 94 Positron fraction 10^{-} PAMELA 08 3% 10^{-2} M.Boezio (PAMELA coll.) 2008 e 10^{-5} background? 1% ς ΈJ packground 10^{-} 10^{-3} 0.3% 10 10^{2} 10^{3} 10^{2} 10^{3} 10 10^{4} 100 1000 10 Energy in GeV $T_{\overline{p}}$ [GeV] Positron energy in GeV

Are these signals of Dark Matter?

YES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, \mathrm{cm}^3 / \mathrm{sec}$

antiprotons

electrons + positrons

electrons + positrons positron fraction antiprotons 30% 10^{-1} 0.1 PAMELA 08 **FERMI 2009** HESS 2008 **ATIC 2008** 10% $+e^+$) in GeV²/cm²s sec sr GeV)] Positron fraction mti-proton flux $[1/(m^2)$ PAMELA 08 3% 10^{-2} e 10^{-5} background? 1% background ? Ω₁1 1 TeV, DM DM $\rightarrow \mu^+ \mu$ $\langle \sigma v \rangle \approx 10^{-24} \frac{\mathrm{cm}^3}{2}$ 10^{-1} Einasto, MAX 0.3% 10^{-3} 10 10^{2} 10^{3} 10^{4} 10 10^{2} 10^{3} 100 1000 $T_{\overline{n}}$ [GeV] Positron energy in GeV Energy in GeV

Are these signals of Dark Matter?

YES: few TeV, leptophilic DM with huge $\langle \sigma v \rangle \approx 10^{-23} \, \mathrm{cm}^3 / \mathrm{sec}$

a formidable 'background' for future searches 1108

 10^{2}

$\frac{1}{\gamma} \text{ from DM annihilations in galactic center}$

$\frac{1}{\gamma} \text{ from DM annihilations in galactic center}$

Galactic Bulge Norma Arm Scutum Arm Crux Arm Carina Arm Outer Arm Perseus Arm Local Arm Sagittarius Arm Sun DM $\mathbf{V}^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and $\boldsymbol{\gamma}$ DM

$\frac{1}{\gamma} \text{ from DM annihilations in galactic center}$

Galactic Bulge Norma Arm Scutum Arm Crux Arm Outer Arm Carina Arm Perseus Arm γ Loca Sagittarius Arm Sun \bullet $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ $dlogN_{\gamma}/dlogE$ DM 10^{-} ${}^{\checkmark}W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ and γ DM 10^{-2} 10 10^{2} 10^{3} typically sub-TeV energies Energy in GeV

$\frac{1}{\gamma} \text{ from DM annihilations in Sagittarius Dwarf}$

Indirect Detection

radio-waves from synchrotron radiation of e^{\pm} in GC

Indirect Detection radio-waves from synchrotron radiation of e^{\pm} in GC

- upscatter of CMB, infrared and starlight photons on energetic e^{\pm} - probes regions outside of Galactic Center

Comparing with data

HESS has detected γ -ray emission from Gal Center and Gal Ridge. The DM signal must not excede that.

Moreover: no detection from Sgr dSph => upper bound.

DM DM $\rightarrow \mu^+\mu^-$, NFW profile

The PAMELA and ATIC regions are in conflict with gamma constraints, unless...

Bertone, Cirelli, Strumia, Taoso 0811.3744

Taoso 0811.3 Bertone, Cirelli, Strumia,

...not-too-steep profile needed. Or: take different boosts here (at Earth, for e⁺) than there (at GC for gammas). Or: take ad hoc DM profiles (truncated at 100 pc, with central void..., after all we don't know).

IsoThermal Profile $m_{\chi} = 3 \text{ TeV}$ DM DM $\rightarrow \tau^+ \tau^ \sigma v = 2 \times 10^{-22} \text{ cm}^3/\text{sec}$ IsoThermal Profile $m_{\chi} = 3 \text{ TeV}$ DM DM $\rightarrow \tau^+ \tau^ \sigma v = 2 \times 10^{-22} \text{ cm}^3/\text{sec}$ IsoThermal Profile DM DM $\rightarrow \tau^+ \tau^-$ 0

00

Ö

Serpi

anci,

Jirel

Inverse Compton γ constraints

Cirelli, Panci. Serpico 0912.0663 $\rightarrow \mu\mu$. NFW profile

Cirelli, Panci, Serpico 0912.0663

DM particles that fit PAMELA+FERMI+HESS produce free electrons

Kanzaki et al., 0907.3985

DM particles that fit PAMELA+FERMI+HESS produce too many free electrons: bounds on optical depth of the Universe violated $\tau = 0.084 \pm 0.016$ (WMAP-5yr) DM DM $\rightarrow \tau \tau$, Einasto profile

see also: Huetsi, Hektor, Raidal 0906.4550 Kanzaki et al., 0907.3985

Cirelli, Iocco, Panci, JCAP 0910

DM particles that fit PAMELA+FERMI+HESS produce too many free electrons: bounds on optical depth of the Universe violated $\tau = 0.084 \pm 0.016$ (WMAP-5yr)

Starts constraining even thermal DM! DM DM $\rightarrow \tau \tau$, Einasto profile

Cirelli, Iocco, Panci, JCAP 0910

Cosmology: bounds from CMB

Similar conclusion from global CMB fits

Galli, Iocco, Bertone, Melchiorri, PRD 80 (2009) Slatyer, Padmanabahn, Finkbeiner, PRD 80 (2009)

Conclusions

Models with large DM annihilation cross section are popular.

Gamma ray constraints are severe:

- all cases excluded except:
 - $DM DM \rightarrow \mu^+ \mu^-$
 - and

galactic Isothermal profile (disfavored by N-body)

- in which case FERMI may soon see a spectacular signal

Cosmological constraints are even more severe:

- all cases excluded (albeit barely)
- starts to probe even thermal DM