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PROPAGATION OF UHECR IN MAGNETIC FIELDS

MC simulation
Yoshiguchi et al., (K, Sato) 2003, propagation in random magnetic field , (B., [.),

Sigl et al., (2003, 2004), Blasi, De Marco (2004), Kachelriess and Semikoz (2005).

Diffusive analytic solution

Aloisio and VB (2004, 2005), Lemoine (2005), based on
Syrovatsky (1959) solution of diffusion equation.



SYROVATSKY (1959) SOLUTION OF DIFFUSION EQUATION
Equation for a single source:

%%(E, 7, t) — div [D(E, 7, t)Vny] — @% b(E, 7, t)ny] = QE, T, 4)8°(F — 7).

solution was obtained by exclusive method introducing the Syrovatsky variables

E

A(E,Eg):/Egdsl;(g, T(E,EQ)Z/EQ%.

This method is valid when D(FE), b(FE), Q(E) do notdepend on time.
The Syrovatsky solution:

1 exp |—1?/AN(E, Ey)]
np(E,r)_b(—E)/E By Q) 4rA(E, B>



SYROVATSKY SOLUTION AND PROPAGATION THEOREM

The Syrovatsky solution obeys the propagation theorem (Aloisio and VB 2004):

FOR UNIFORM DISTRIBUTION OF SOURCES WITH SEPARATION d
MUCH LESS THAN CHARACTERISTIC LENGTHS OF PROPAGATION,
SUCH AS [, (E) and lgis(E), THE DIFFUSE SPECTRUM OF UHECR
HAS AN UNIVERSAL (STANDARD) FORM INDEPENDENT OF MODE
OF PROPAGATION .

when d — 0 solution for any mode of propagation tends to universal spectrum,
which for homogeneous distribution of sources can be calculated from conservation of
number of particles in the comoving volume np(E)dE = [ dtq[E,(t),t|dE,, where
q 1s the production rate per unit comoving volume.

Lo(yg —2) [ . |dt
Juniv(E): c 0(/79 )/O dz

dz

A7 E?

min

(E,E,2)\ " dE,

where L is emissivity and m describes evolution.
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CALCULATION OF THE DIFFUSE FLUX

We calculate diffuse spectrum for sources located in vertices of cubic lattice

maz exp [—r?/él)\(E, Eg)}
T (E) 47r b(E) Z/ Ey) (4TA(E, E,))%/?

The diffusion coefficient D(F) is needed for calculation of A\(E, E,).

We assume magnetic turbulent plasma described as ensemble of MHD waves. Diffu-
sion occurs due to resonant scattering on MHD waves. Magnetic turbulence has the
basic (largest) scale [. with magnetic field B..

[t determines the critical energy F. by relation r (E.) = ..

AtE > E. D(FE) =~ cr?/l. ~ E? for any spectrum of turbulence.
At E < E. D(F) is determined by spectrum of turbulence,
e.g. D(F) ~ E'/3 for the Kolmogorov spectrum.

Another option is the Bohm diffusion D(F) = crp(E) ~ E.



CONVERSION OF DIFFUSIVE SPECTRUM TO UNIVERSAL SPECTRUM
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DIFFUSION at LOW-ENERGY END of UHECR
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diffusive propagation

The low-energy "diffusive cutoff’ at £, = 1 x 10'® eV is universal and valid for all
propagation modes. It is determined by fundamental energy F., = 2 x 10'® eV,
where pair-production and adiabatic energy losses become equal. The spectrum
at & < By, depends on mode of propagation, e.g. rectilinear, Bohm or Kolmogorov
diffusion. The low-energy ’cutoff’ provides transition from extragalactic to galac-

tic CR.



DIFFUSION EQUATION IN EXPANDING UNIVERSE
2
Metric: ds? = c*dt? — a*(t)dzr = —g,dzt”,
diag g, = (—1,a% a* a”), diag ¢" = (~1,1/a*,1/a® 1/a?),

Diffusive flux in the local frame:

0
Jk = —D%n(:c t), (k=1, 2, 3).
Conservation of current j* :
3:1:” (V97") =

Performing differentiation:

0 5 B
& n(E, 1) + BH(n(E 1) — 5 Vin(#,1) =0
Including energy losses and the source term:
o gy - 2B DG, 0 pip 2 CE D

ot a2(t) OF a3(t)



Analytic solution of the diffusion equation

Equation for the Fourier components f,(E,t):

Ob(E,1) | D(E.1)

9 ¢ B0+ |38 () - TR

0
afw(Eat)_b(E t) OF

fulB,t) = =5

The characteristic equation:
dE/dt = —b(FE, 1)
coincides with equation for energy evolution. Its solution is
&' =FE'(E,tt).

The solution of equation for f,(FE,t) with energies taken on characteristic:

t

St Ob(E" .t D(E" "
fw(E,t) :/ /chg(t ) ) exp —/dt” [?)H(t”) o (ag/,/t ) —I—ch éz(tj//t) )

tg ¢/




Introducing the analogue of the Syrovatsky variable

t D 41
)\(E,t/) — / dt” (g 7t ),
’ a?(t")

we obtain for spherically symmetric case

dt

dz

exp[x2/4\(E.2)] dE,

Q[Eg(E,Z),Z] [47T)\(E,Z)]3/2 dE’

n(xg,E):/ dz
0

where
dt’

dz’

dE ?
= 0w | [

—dt/dz =1/ [Ho(l )/ (1 + 2)3 + A} |

c%mt (5/, Z/)
o0&’ ’

to be compared with the Syrovatsky solution:

ng(E, xg) = —— dE¢Q(Ey)

1 /OO exp [—Xg/él)\(E, Eg)}
b(E) Jg 4rA(E,E.)]*?



SUPERLUMINAL PROBLEM IN DIFFUSION EQUATION

Simple case:

Solution of energy-independent stationary diffusion equation:

o on(r) _ Qo

"= G o dxDr?
, D@n Don D g
= — — = NU uy == — = C—
J or ’ nor r r
atr <lg, u>c.
Similar example:
r? ~ Dt, uw%w%zc%

atr <lyg, u>c
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SUPERLUMINAL PROBLEM DUE TO ENERGY LOSSES

w(Br) = o [ AEQUED)

E

E — ErY(E,r)
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PRACTICAL RECIPES

Relativistic equation with diffusion as low-energy asymptotic:
1s not found during last 100 years.

e.g. the telegraph equation

92 9 ,
Td@’n/%— an—DV ’n,—Q,

ca = (D1g)"?, 74— 0 gives diffusion equation.
Standard practice: to avoid regions of superluminal regimes.
In UHECR diffusion we used:

e atr < [4: rectilinear propagation,
e atr > [4: diffusive propagation,
e with interpolation between,

e exclusion regions with large superluminal contribution.



JUTTNER APPROACH

E. J. Juttner (Ann. Phys. (Leipzig) 1911) found relativization of the non-relativistic
Maxwell distribution.

Dunkel, Talkner, Hanggi (2007) observed the identity of the Maxwell distribution,

m \3/2 muv?
Pr(v) = (27rkT) P (_ 2kT> |

with the Green function of energy and time independent 3D diffusion equation,

1 r?
Pdiff(r7 t) — (47TDt)3/2 eXp (_4—Dt) )

obtained after substitution v — r and kT /m — 2Dx.

Aloisio, V.B., Gazizov (2008) generalized the Jiittner function for energy and time
dependent diffusion solution in expanding universe.



PROPAGATOR FORMALISM

We introduce phenomenologically the propagator P(FE,r,t) as

n(E,r) = /OOO dt Q|E,(E,t),t] P(E,t,r) dEq

E
dE( 1)

where () is a source generation function, and P(FE, r,t) can be thought
of as the Green function of unknown relativistic propagation equation.

P(FE,r,t) must satisfy the following conditions:

e absence of superluminal signal: P(FE,r,t)=0 at 7 >ct,
e normalized probability to find a particle [ dVP(E,r,t) =1,
e rectilinear propagation at large energies:

1 r
P(E,t,’l“) — 47T(33t25(t_ E)v

e diffusive propagation at low energies:

1 r
PELD = @, opre P (_m>




JUTTNER PROPAGATOR

In terms of v = r and kT /m = 2Dt the Jiittner propagator is given by

O(ct —r) c*t/2D

PEED) = s ztapy 1 - @) 0 | =t )

where Z(y) = 4w K1 (y)/y and K (y) is the modified Bessel function.
This Jiittner propagator corresponds to the simplest diffusion equation,

To obtain the propagator for energy-dependent propagation with Syrovatsky solution,
one should change the variables as

2t 22 22 22

2D 2Dt 2[D(E,t)dt 2X(E,1)
b= E(t) =1/t

a(E,t).

This gives the modified Juttner propagator.



MODIFIED JUTTNER PROPAGATOR

_ 9(1 o f) 1 Q(E,f) ex o Oé(E,f)
PmJ(E,t,T) ~ An ( )3 (1 _52)2 Kl[&(E,g)] p /—1 _52 )
Ey(E,§)] a(E,§) a(E,§)
n(E,r) = 47T(3r2 / f’df 1 — 22 Kq[a(E,§)] P V1 — &2

El’l’ll’l

High-energy regime o < 1, ¢ — 1 (rectilinear propagation):

o= el ()]

Low-energy regime a > 1, & < 1 (Syrovatsky solution):

Ot —r) oxn | r?
PUEE) = 4 \(E, 1))/ p[ 4A(E,t)]'




JUTTNER PROPAGATOR FOR EXPANDING UNIVERSE

We use as variables £(t) and «( E, t), where

T c’t Pt ¢ (1)
=20 D= Di  nED

a(E,t),

o cdt I dz
()= /t a(t)  Ho /0 VO (T +2)3 +Qn

1s comoving length of particle trajectory.

'53
PeJ(Eataxs) — 9(1 R 5) ZCS;’(]. - 52)2 47_‘_1?1(&) exp <_ \/161752> :

1 [ et QIE,(E.€)] a (o
ME ) = e / 1+2(6) (1—&)% Ki(a) p( /71§2> dE

min

P.;(E,t,xs) has correct asymptotics.



PROPAGATION IN TERMS OF «(FE, z)
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DIFFUSE SPECTRA IN EXPANDING UNIVERSE
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CONCLUSIONS

We obtained the analytic solution of diffusion equation for ultra-relativistic
(E ~ p) particles (electrons, protons, nuclei). The solution is valid for ex-
panding universe and for diffusion coefficient D and energy loss b with ar-
bitrary dependence on E and t.

Transition between diffusive propagation and rectilinear propagation at
high energies is described by the modified Juttner function.

Comparison of diffusive (Syrovatsky) spectra from a source show the good
agreement with numerical simulations by Yoshiguchi et al 2003.

The method of diffusion equation is important for low-energy end of UHECR
1 x 107 < E < 1 x 10* eV, where numerical simulations need unrealisti-
cally long computation time.

At E < 1 x 10*® eV spectrum of extragalactic protons has the diffusion
cutoff, which provides transition from extragalactic to galactic cosmic rays
at the second knee at Egy,, ~ (0.4 —0.8) x 10'® eV, as measured in different
experiments.



THREE TESTS OF THE SOLUTION

1. The solution coincides with the Syrovatsky solution when

D(E,t) = D(E), b(E,t) =b(E), a(t)=1.

2. In case of homogeneous distribution of sources, the solution gives the universal
spectrum as must be according to propagation theorem.

3. Solution for rectilinear-propagation equation

on  c€ On on ob  Q(E,1)
ot Vamaz Mgy T3 ngE = T 5

0% (% — &),

obtained by the same formal method gives the correct (known) solution

Q(Eg’tg) dEg

to, B/) =
n(fo, £) drexZ(1+ zy) dE




