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collimated bipolar outflow from gravitationally bounded object

 microquasar jet: v ~ 0.9c
 active galactic nuclei (AGN) jet: γ ~ 10

 Gamma-ray burst: γ > 100

Lorentz factor

What is a relativistic jet?

Meszaros 01

schematic picture of the GRB jet

t

v ~ 0.92c

microquasar: 
GRS 1915+105

Kovalev et al. 2007

Mirabel et al. 1998



Morphological Dichotomy of the Jet
3C 31

Cygnus A,

 Morphology is one of the most fundamental property of the relativistic jet. 

FR I FR II

- A complex combination of several intrinsic and external factors
 A morphological dichotomy between FR I and FR II

 Instabilities play an important role in the morphology and stability of the jet 
   through the interaction between the jet and external medium.



Why is stability of the jet interface so important?
 The stability of the jet interface is also related to the inhomogeneity of the 

jet and the evolution of the turbulence inside/outside the jet. 

 They may affect on the radiation from the jet associated with the particle 
and/or photon acceleration.

 Multiple outflow layers inside the relativistic jet are essential to reproduce 
the typical observed spectra of GRBs (Ito et al. 2014)

 The development of the turbulence inside the jet is important point in 
order to discuss the mechanism of the particle acceleration in the context of 
the GRB (Asano & Terasawa 2015) and blazer (Asano & Hayashida 2015; 
Inoue & Tanaka 2016).

A promising mechanism to make the interface of the jet unstable is thought to be 
the Kelvin-Helmholtz instability. Many authors have investigated the growth of 
the Kelvin-Helmholtz instability. However, the growth of the Rayleigh-Taylor 
instability at the interface of the relativistic jet is not still understood well.
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Estimation of the pressure scale height
Since the effective gravity has its origin in the radial oscillating motion 
of the jet, assuming the amplitude of the jet oscillation is roughly equal 
to the jet radius, the effective gravity is estimated as follows;

g ⇠ r
jet

⌧2
osci

Here τ is the typical oscillation time of the jet and given by the propagation 
time of the sound wave over the typical oscillating radius of the jet (JM et 
al. 2012); 
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Since we neglect the impact of the curvature of the jet radius in this study, 
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Derivation of linear growth of RTI

basic equations:

equation of motion: x

equation of motion: y

incompressible condition

x

gjet

cocoon

�2⇢h


@v

@t
+ (v ·r)v

�
+rP +

v

c2
@P

@t
� �2⇢hg = 0

yequation of motion:

@v

x

@x

+
@v

y

@y

= 0

v
x

, v
y

⌧ c
sassumption:

temporal variation of the pressure is negligible

continuity

conservation of entropy

effective 
inertia force

incompressible fluid

@

@t

(�⇢) + v

x

@

@x

(�⇢) + v

y

@

@y

(�⇢) = 0

�

2
⇢h

✓
@v

x

@t

+ v

x

@v

x

@x

+ v

y

@v

x

@y

◆
= �@P

@x

�

2
⇢h

✓
@v

y

@t

+ v

x

@v

y

@x

+ v

y

@v

y

@y

◆
= �@P

@y

� �

2
⇢hg

@s

@t

+ v

x

@s

@x

+ v

y

@s

@y

= 0



Derivation of linear growth of RTI

linearized equations:

equation of motion: x

equation of motion: y

incompressible condition
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Derivation of linear growth of RTI
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Derivation of linear growth of RTI
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Since the density and Lorentz factor are constant in the jet and cocoon regions,  

using                                              ,

the differential equation for both jet and cocoon regions of the fluid reduces to



Derivation of linear growth of RTI
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Derivation of linear growth of RTI
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Jet models

 two key parameters

- the effective inertia ratio of the jet to the ambient medium:⌘j,a =
�2
j ⇢jhj

⇢a
Neglecting the multi-dimensional effect, the propagation velocity of the jet head 
through a cold ambient medium can be evaluated by the balancing the momentum 
flux of the jet and the ambient medium in the frame of the jet head (Marti+ 97, Mizuta+ 04):
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p
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- dimension less specific enthalpy of the jet: hj
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Result: Density

The amplitude of the corrugated jet interface 
grows due to the oscillation-induced Rayleigh-
Taylor and Richtmyer-Meshkov instabilities.

Since the relativistic jet is continuously injected into the 
calculation domain, standing reconfinement shocks are formed.

Only the jet component is shown.



Distribution of the Modified Effective Inertia

As predicted analytically, the effective inertia of the jet becomes larger 
than the cocoon envelope for all the models.

�2⇢h0



3D Rendering of the Tracer
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passive tracer: f

f = 1

f = 0

: jet material

: ambient medium

The oscillation-induced Rayleigh-
Taylor instability is responsible for 
the distortion of the cross section at 
z = 30.

Finger-like structures appeared in 
the cross-section at z = 65 and 90 
are outcome of both the Rayleigh-
Taylor and Richtmyer-Meshkov 
instabilities.



Inherent Property of Relativistic Jet

Although the relativistic jet shows a 
rich variety of the propagation 
dynamics depending on its launching 
condition, the oscillation-induced 
Rayleigh-Taylor instability and 
secondary Richtmyer-Meshkov 
instability grow commonly at the jet 
interface and then induce a lot of 
finger-like structures.

- radial expansion (hot models)

 initial evolution

- radial contraction (cold models)

After initial stage, the cold jet also 
follows the same evolution path as 
the hot jet and thus excites the 
Rayleigh-Taylor and Richtmyer-
Meshkov instabilites.



Kelvin-Helmholtz instability?

798 P. Rossi et al.: Dynamical structures in relativistic jets

Fig. 1. Volume rendering of the tracer distribution for case A at t = 240 (top panel), B at t = 760 (central panel) and E at t = 150 (bottom panel).
Dark colors are due to the opacity of the material in the rendering procedure

Jet material is dark brown, external medium material white, and
the level of mixing corresponds to the scale of orange. From
these figures one can gain a first qualitative view about the role
of the parameters on the evolution and structure of the jet: in
cases A and E the jets propagate straight with moderate and
low dispersion of jet particles, whereas in case B the jet has, at
least partially, lost its collimation and the particle dispersion is
considerably greater.

This is more clearly represented by the 2D cuts in the x, y
plane (at z = 0) of the density and Lorentz factor distributions
shown in Fig. 2. From the density (left) panels one can note that
in both cases A and E the jet seems to be weakly affected by the
perturbation growth and entrainment. This is not the situation
for case B, where the beam structure is heavily modified by the
growth of disturbances beyond ∼20 jet radii. The distributions
of the Lorentz factor (right panels) again indicate that the per-
turbation slightly affects the system in case A after ∼100 radii,
leaves the jet almost unchanged in case E, and strongly influ-
ences the propagation after ∼20 radii for case B, where the max-
imum value of γ has reduced approximately to half of its initial
value. However, even in case B a well collimated high velocity
component along the axis still displays.

A quantitative estimate of the jet deceleration can be ob-
tained by plotting the Lorentz factor as a function of the
longitudinal coordinate y. Figure 3 shows the maximum value

of γ at constant y-planes together with its volume average, de-
fined as

γav =

∫
γg(γ) dxdz

∫
g(γ) dxdz

, (5)

where g(γ) is a filter function to select the relativistic flows:

g(γ) =

⎧⎪⎪⎨
⎪⎪⎩

1 for γ ≥ 2 ,
0 for γ < 2 . (6)

For case B one can see that the deceleration occurs both in γmax
(the flow velocity, although still relativistic, shows a strong de-
crease from its initial value) and in γav, which indicates a global
effect, whereas in cases A and E the central part of the jet con-
tinues to be almost unperturbed and only thin external layers are
decelerated.

As previously mentioned, the interaction between jet and
surrounding medium involves different phenomena, reflecting
the characteristics of the deceleration process: the growth rate
of the perturbations, the type of perturbations that dominates the
jet structure, the possibility of mixing through the backflowing
material and the density of the ambient medium relative to the jet
material. Long wavelength modes will tend to produce global jet
deformations like jet wiggling more than mixing, while modes
on a shorter scale may be more efficient in promoting the mix-
ing process. On the other hand, it is clear that the mixing with
a denser environment is more effective for the jet deceleration.

Rossi et al. 2008 3D pure hydro simulation for jet propagation

tracer

They claimed that the entrainment process takes place from the interaction 
between the jet beam and the cocoon, promoted by the development of 
Kelvin-Helmholtz instabilities at the beam interface. 

Rayleigh-Taylor instability is also expected to grow at the interface of the jet.

Which instability is dominant??
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