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Radiation Mediated Shocks (RMS)
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Radiation dominated fluid

Shock transition downstream Uy

mediated by Compton scattering
picture taken from Levinson @ Gamma-Ray Burst "NEW MISSIONS TO NEW SCIENCE"

» downstream energy dominated by radiation

= upstream plasma approaching the shock is decelerated by
scattering of counter streaming photons




Under which conditions a RMS forms ?

Weaver 1976

(I) Radiation dominance downstream: aT,*> n, kT,

from jump conditions: n,m c?p,? ~ aT*

= |B, >4 %105 (n, /1015 cm3)Vs

(1) Photon trapping at shock region

Diffusion time t, = shock crossing time tg,
= [T>> Tdec ~ 1/ B,

Relevant Astrophysical Phenomena

Shock breakout from stellar surface (e.g, SN, HN)
Shocks in Accretion flows (e.g., AGN, yQSO)

Shocks in Jet (GRBs, AGNS)




Collisionless shocks versus RMS

collisionless

Plasma turbulence
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Upstream u,

* Scale: c/m, ~ 1(n;5)Y2cm, clog~ 3e(Bg)™* cm

e can accelerate particles to non-thermal energies.

Shock transition mediated by
collective plasma processes

downstream U d

RMS

Scattered photons

Upstream uu

< Radiation dominated fluid

e scale: (ornB)*t ~109n,tem
 microphysics is fully understood
%  cannot accelerate particles

Shock trénsition mediated by

Compton scattering

downstream || d




Non-relativistic .vs. Relativistic

Non-relativistic RMS

- small energy gain: Ae/e<<1
« diffusion approximation holds. Used in most early treatments

Relativistic RMS

« photon distribution is anisotropic
* energy gain large: Ae/e >1

optical depth depends on angle: T o (1—3 cos0)
e cOpious pair production




Non-relativistic RMS

Thermalization Katz et al. 2010

length Shock crossing time

> t. = A, /(cBs)
ceq mmef N TTTTT======iffusion time

Decelaration Length A~ (n orT /85)

Jump Condition in strong shock

n,Bs = nyPa, ; e
Py.a = nuPs(Bs — Pa)m pc”, L ~ Be y.€q
2 2 2 T
4py.aBa = nuBs(B; — Bg)mpc” /2 | eff




diffusion approximation significantly reduces the difficulty of problem

Assumption : strong shock (p, = 0), Thomson limit (energy independent scattering)
radiation dominant pressure

Conservation
1,8 = 1y s EOS
Py = nuPs(Bs — /8)mpC2 ey = 3py
c de,| B> — p? ;
-(ej/ + p]/)ﬁc — 3”;90']" Jx — nuﬁsmp > C
diffusion
- - B analytic solution
df (18— = p) . [ a7
> ax 6/ X = —1In (Nﬁ)
x = 3orn,Bx 7 (78 — 1)
B = B/Bs = =

Katz et al. 2010



diffusion approximation significantly reduces the difficulty of problem

Assumption : strong shock (p, = 0), Thomson limit (energy independent scattering)
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Relativistic RMS

Radiation transfer and copious pair productions needs to be solved

Levinson & Bromberg (2008), Beloborodov (2016)
Hot up stream

photons advected from upstream mediate the shock

Up to Lorentz factor =2
Pair creation is not included

Budik et al. (2010)

Cold up stream plasma (no photons)

Photons produced in the downstream mediates the shock
Up to Lorentz factor ' = 30
Approximated cross sections for scattering and pair creation



Budnick (2010)

4o _
= (), :energy
dzsh sh
d .
g = U, :momentum
dZsh
I
n, = np‘u”—ﬁ”, :baryon number
d(I'pn,) - on
dza — T’ :pair creation, annihilation
S
dl,, (jtsh)
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emission absorption
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Budnick (2010)
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Budnick (2010)

Spectrum inside the shock
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Non-thermal spectrum appears due to bulk Comptonization



Previous studies of RRMS

évinson & Bromberg (2008), Beloborodov (2016) \

photons advected from the upstream is dominant
Up to Lorentz factor =2

Pair creation is not included Limited
: range of
Budik et al. (2010) parameters

Photons produced in the downstream is dominant

Up to Lorentz factor ' = 30
Approximated cross sections for scattering and pair creation/

Aim of the present study

Construction a fully self-consistent steady solution of RRMS
application to GRBs, Shock breakout , etc..
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/Condition for RMS to form

Weaver 1976

\_

- Optically thick (t>>1)
* propagation velocity
By >4 x107n

n = 10°n;5 em™

1/6
15

always satisfied for GRB fireball at

subphotospheric region
(e.g., Bromberg + 2011)
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—>» RRMS will have significant impact on the emission
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RRMS in GRB fireball

Photon rich in upstream (n, /n,~ 104 -10°>>1)

Thermalization depth L ~ poliza

Photon generation: Bremst. + double Compton Qy etr

Free-free: 4= 10°A 1 (ny15) Y8y,

Double Compton: t'pc= 108 Apct (Nys) Yoy,
Thermalization length >> shock width (t~few)

Photon advection dominant

(Photon generation and absorption can be neglected)

Levinson 2012
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2 3 4 5 6 7 8
T= l'lL1 O X
Assumption

-advection dominated

Give plasma profile (n,T,I)

J

Solve radiation transfer using
Monte-Carlo Method

|

Evaluate the deviation from
steady profile

Iterate until convergence

Yoeqpos)

-thermal distribution at far up stream

(emission. absorption neglected. only scattering)

-large photon to proton ratio
(Npn / Np = 10% - 10°)

-electron has Maxwellian distribution

r,=2
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m rad (radiation momentum flux) = 1 Fm matt (Plasma mom flux) @ far upstream region
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"Fm.rag (radiation momentum flux)

= 0.1 Fy matt (plasmamom flux) @ far upstream region
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'Fm,rad (radiation momentum flux) = 0.01 Fm,matt (plasma mom flux) @ far upstream region
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"Fm.rag (radiation momentum flux)

0.01 Fy matt  (plasma mom flux) @ far upstream region

L L .
t P t
PR —

o
@
N 10 ¢ v
=
1 -7 T,
0.1 ¢ ) ) . ‘ IQ,cm Nph,emf

o ~100

100 | ]

T (keV)

T

e
10 I(}{pmf‘,gnplh,cmf

Fm[Fm.u
Fe/ Fe.u -

-0.2  -0.1 0 0.1 0.2 0.3 04 0.5

o= T (np+ni) odx

Post subshock plasma is quickly

F Fm,rad/Fm.pl

10 F erad “epl T 4

cooled and accelerated by the

ad/ ¥yl

radiation

Necessity of subshock

Eddington factor
Iz,cmf/IO,cmf




f\/IV dQ (a.u.)

Comparison with Band spectra
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Summary

RRMS in photon advection dominated regime is computed

— As in the previous studies we find the deceleration length to
be At ~1

— Strong anisotropy develops near the shock and give rise to
highly non-thermal spectrum

— Necessity of subshock for F, .4 >> F, mat

— Possible origin of Band spectrum

Future work

-Parameter survey

-Implementation of photon production and absorption
-Implementation of magnetic fields



