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Introduction



Gamma-ray burst (GRB)
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v Short GRB ( £ 2 s)
— Compact star binary merger Short GRBs Long ERBS

v Long GRB ( 22 s) ;
— Collapsing massive star T g

— A part of GRBs accompany with SNe




GRB emission mechanism
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Briggs et al. 1999
e GRBs originate from a relativistic jet formed

around a collapsing massive star S ~ ;
~=-2.95

Band et al. 1993

e A specific broken power law is observed
e Detailed emission mechanism is unknown

v Internal shock model — Radiation efficiency is low

vi Photospheric model = Radiation efficiency is high
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Numerical reproduction of GRB spectrum
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e Radiative transfer computations
non-thermal spectra  Were implemented on Steady
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Jet structure varies
Inhomogeneously

Radiative transfer computation should be
implemented on unsteady background

Coupled computation of radiative transfer
with relativistic hydrodynamics
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Coupled computation

Relativistic Hydrodynamics

Feedback from interaction Background
of matter with radiation flowfield

Radiative Transfer

Requirements for coupled computation in GRB

o Ultra-relativistic flow velocity (Lorentz factor I' 2 100)

e Strongly anisotropic radiation
e Radiation mediated shock (A. Levinson 2008, R. Budnik 2010)

Such coupled computation has not been performed yet




Preliminary for coupled computation

Validation of photon transport
with a discontinuous shock
wave has been performed

Shock wave front is smeared
in a hydrodynamical simulation
due to numerical diffusion

Radiative transport with
a smeared shock wave
should be implemented

Qur previous study

,1 sampling at
boundaries

<q > <«

discontinuous shock "

Comparing among 3 different inertial frames

0
10 Only Thomson scattering
10 shock rest frame
Lorentz factor 10
102k Lorentz factor 100

Spectra are in

102 10° 10° 10 10°
photon energy, E [keV]



Objectives

Reproducing GRBs originated from relativistic jets by coupled computation

Preliminary for coupled computation

Examining the effect of shock structure of relativistic
background flowfield on radiative transfer computation

e Performing photon transport in a modeling flowfield with a
discontinuous and smeared shock wave

e Conducting photon transport in 1D hydrodynamical flowfield
without interaction of radiation with fluid matter

e Estimating the effect of shock structure on the emission spectra
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Method



Numerical method

Radiative transfer equation including scattering
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Every photons are put

xsngepontmtaty | SlMulation condition
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e Photons are tracked with a moving discontinuous and smeared
shock wave, and sampled at right boundary

e Density distribution is artificially smeared in shock front
(pmax @nd pmin Satisfy Rankine-Hugoniot relations)

e Flow velocity is determined by the equation of continuity
12



Every photons are put

xsngepontmtaty | SlMulation condition

(105 sample particles)
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e Photons are tracked with a moving discontinuous and smeared
shock wave, and sampled at right boundary

e Density distribution is artificially smeared in shock front
(pmax @nd pmin Satisfy Rankine-Hugoniot relations)

e Flow velocity is determined by the equation of continuity
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Every photons are put

xsngepontmtaty | SlMulation condition

(105 sample particles)
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e Photons are tracked with a moving discontinuous and smeared
shock wave, and sampled at right boundary

e Density distribution is artificially smeared in shock front
(pmax @nd pmin Satisfy Rankine-Hugoniot relations)

e Flow velocity is determined by the equation of continuity
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Spectra with modeling flowfield



Spectra with different shock width

With discontinuous shock wave
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e Peak energy position is different depending on flow velocity

of initial photon position

e High-energy photons (~10° KeV) are absent because they

travel to backward direction

e Shape in high-energy side v1a6ries with shock width



Cause for shape difference of spectra

v, ATA v and At distributions
v~0.999c shockwave v~0 are smeared
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e High-energy photons are produced by bulk-Compton scattering

e Probability of scattering and energy gain vary due to a smeared
shock wave

Probability of scattering — Optical depth per 1 cell, At
Energy gain by bulk-Compton — Flow velocity, v

e The difference of the shape of spectra in high-energy side is

interpreted by At and v distributions around shock wave front
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At and v distributions around shock wave

With discontinuous shock wave
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With smeared shock wave
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e High-energy shape in spectra with smeared shock wave is
formed by multiple small velocity jumps

e The shock structure can affect on the shape of spectra in

one-dimensional shock wave
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Comparing among various shock width
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e Shape in high-energy side varies depending on shock width
e High-energy slope in 100-cell smeared shock = 3 ~ -2

e Appropriate p value may come from numerical diffusion
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Summary

Effect of shock structure on radiative transfer
computation has been examined

e Radiative transfer simulations were implemented on
the flowfield with a discontinuous and smeared shock wave

e Shape in the high-energy side for the two cases were
different due to the effect of bulk-Compton scattering

e Appropriate  value may come from numerical diffusion

e Similar feature appears in both of modeling and
hydrodynamical computations

 The shock structure affects on the escaped spectra in one-
dimensional computation
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Future works

Reproducing observed GRB spectra by coupled computation
of radiative transfer with relativistic hydrodynamics

¢ Introducing electron energy distribution
e Considering pair production and annihilation
e Selecting proper emission position

e Examining the effect of space resolution on emitted
spectra

¢ Performing coupled computation with interaction
between radiation and matter
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