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Preface

We are pleased to present the annual report of Research Center for the Early Universe (RESCEU) for
the fiscal year of 2022 (from April 2022 to March 2023).

RESCEU was founded in 1999 as an institute belonging to Faculty of Science, the University of Tokyo,
led by the first director, Prof. Katsuhiko Sato of Physics Department. In 2015 we reorganized the research
projects in RESCEU, and now we have three major projects including (1) Evolution of the universe and
cosmic structures (led by Jun’ichi Yokoyama), (2) Gravitational-wave astrophysics and experimental gravity
(led by Kipp Cannon), and (3) Formation and characterization of planetary systems (led by Yasushi
Suto). Those projects have been supported by a variety of collaboration among our research affiliates in
Departments of Physics, Astronomy, and Earth and Planetary Sciences of Faculty of Science, the University
of Tokyo.

Due to the pandemic of COVID-19, the activity in RESCEU has been seriously affected for the last couple
of years. We had been struggling to advance our projects; weekly seminars and regular discussions have
been carried out via zoom, and we organized a summer school online inviting several foreign researchers.
Since the latter half of the year, we have been gradually been resuming face-to-face activities such as
seminars and workshops.

We are pleased to announce the following awards for our RESCEU members this year. Professor Kenta
Hotokezaka received the Yukawa-Kimura Prize, for his research on ”Electromagnetic Counterparts of Neu-
tron Star Mergers” in January 2023. Fumihiro Naokawa, a graduate student of Yokoyama group, received
the School of Science Encouragement Award (Master program), University of Tokyo in March 2023. The
following students of Yokoyama group received presentation awards in the conferences as follows. Jason
Kristiano: 2nd International Symposium on Trans-Scale Quantum Science (poster, Nov. 2022) Jun’ya
Kume: 26th International Summer Institute on Phenomenology of Elementary Particle Physics and Cos-
mology (poster, Sep. 2022) Hyun Jeong: Joint workshop on General Relativity and Cosmology (oral,
Mar. 2023).

Along with these awards to current members, former director Professor Emeritus Kazuo Makishima
received the Order of the Sacred Treasure, Gold Rays with Neck Ribbon in April 2022.

In 2022, two new faculties, Kana Moriwaki and Kentaro Komori (since June), joined as assistant profes-
sors. Moriwaki is working on observational cosmology and large scale structures at Yoshida group, while
Komori is dedicated to gravitational wave science at Ando group. Two new project assistant professors,
namely, Akihiro Suzuki and Ryusuke Jinno (since October) have been hired by RESCEU. Suzuki is an
expert of supernovae working with Shigeyama, while Jinno is a particle cosmologist mainly working with
members of Yokoyama group. Furthermore, six postdocs joined us, namely, Yuki Takei (JSPS, Shigeyama
group), Daichi Tsuna (Shigeyama group), Purnendu Karmakar (JSPS, Cannon group), Kazuya Takahashi
(Hotokezaka group), Alessandro Trani (Suto group), and Wang Haoyu (Ando group). On the other hand,
several people left RESCEU to a new position: Yuji Chinone to an assistant professor at KEK on October
1, Heather Fong to University of British Columbia as a CITA National Fellow on February 1, Daichi Tsuna
to Caltech as Burke Fellow on December 1, and Alessandro Trani to Niels Bohr Institute on December 1.

Finally, Professor Yasushi Suto stepped down from the director after eight years of his service, and I
have taken over the directorship. Since COVID-19 has finally turned to normal endemic, we are planning
to resume various face-to-face activities this year such as the summer school, international conferences, and

inviting visiting professors. We would appreciate your further support for our activities.

May 2023

Director Jun’ichi Yokoyama
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Reports on overall activities
at RESCEU in 2022



1 Members

’ RESCEU members ‘

Yasushi Suto [ZHEEH]
Jun’ichi Yokoyama [ LiJIE—]
Kipp Cannon

Toshikazu Shigeyama [/5ILI{£&F)]

Kenta Hotokezaka [{ARfE# K]
Kohei Kamada [$ift FH#FF]
Atsushi Nishizawa [PUERE&]
Kana Moriwaki [#R ] %3]
Kentaro Komori [N AR
Akihiro Suzuki [$3AKIEZ]
Yuji Chinone [ZAR#H]|
Ryusuke Jinno [fEFFEST]
Koh Ueno [ F¥7 5]

Daisuke Toyouchi [£PATH]
Christopher M. Irwin
Kazuya Takahashi [/ &)
Alessandro Trani

Daichi Tsuna [{H44 K]
Wang Haoyu

Yuki Takei [BH 5]
Purnendu Karmakar
Heather Fong Kin Yee

Chiyo Ueda [ FHFAK]
Naoko Tomioka [ [MlE ]
Mami Narita [f%Hi3€]

Nao Watanabe [J43J4)

Director

Professor

Professor

Professor

Associate Professor

Assistant Professor

Assistant Professor

Assistant Professor

Assistant Professor

Project Assitant Professor

Project Assitant Professor

Project Assitant Professor

Postdoctoral Fellow (Kakenhi Grant of Prof. Yokoyama)
Postdoctoral Fellow (RESCEU)

Postdoctoral Fellow (Kakenhi Grant of Prof. Hotokezaka)
Postdoctoral Fellow (RESCEU)

Postdoctoral Fellow (RESCEU)

Postdoctoral Fellow (RESCEU)

Postdoctoral Fellow (Kakenhi Grant of Prof. Michimura)
Postdoctoral Fellow (JSPS Grant)

Postdoctoral Fellow (JSPS Grant)

Postdoctoral Fellow (Kakenhi Grant of Prof. Cannon)
Secretary

Secretary

Secretary

Secretary



1 Members

RESCEU affiliates |

Naoki Yoshida [ FHEAC]
Tomonori Totani [F A& Hll]
Kotaro Kohno [{A[EFZ£KHN]
Mamoru Doi [1:J&5F]
Motohide Tamura [FHATTF]
Seiji Sugita [#ZHFEH]]

Eiichi Tajika [FHI%—]
Satoshi Yamamoto [[LIA<8]
Hideo Higuchi [$&I155 %)
Chikara Furusawa [ /7]
Aya Bamba [[535¥]

Akito Kusaka [H NBEA]
Kazuhiro Shimasaku [I§{E—K]
Masaki Ando [Z 8 [F 48]
Hajime Kawahara [{A]JiREl]
Nobunari Kashikawa [#1)1[{#5Z]

Professor, Dept. of Physics

Professor, Dept. of Astronomy

Professor, Institute of Astronomy

Professor, Institute of Astronomy

Professor, Dept. of Astronomy

Professor, Dept. of Earth and Planetary Science
Professor, Dept. of Earth and Planetary Science
Professor, Dept. of Physics

Professor, Dept. of Physics

Professor, Universal Bioligy Institute

Associate Professor, Dept. of Physics

Associate Professor, Dept. of Physics

Associate Professor, Dept. of Astronomy
Associate Professor, Dept. of Physics

Assistant Professor, Dept. of Earth and Planetary Science

Professor, Dept. of Astronomy



2 Projects

Project 1. Evolution of the Universe and cosmic structures

’ Name

‘ Research thema

Jun’ichi Yokoyama

Physics of the Early Universe

Toshikazu Shigeyama

Coevolution of galaxies and stars

Naoki Yoshida

Evolution of compact objects and time domain astronomy

Tomonori Totani

Evolution of the Universe probed by gamma-ray bursts and fast radio

bursts

Kotaro Kohno

Dust-enshrouded growth of galaxies and supermassive black holes

Aya Bamba

Chemical evolution of the Universe with supernova remnant study

Akito Kusaka

Observational cosmology based on cosmic microwave background radiation

Kazuhiro Shimasaku

Galaxy formation and evolution

Nobunari Kashikawa

Distant objects and early Universe

Kohei Kamada

Particle cosmology

Kana Moriwaki

Machine learning and cosmology

Project 2. Gravitational-wave astrophysics and experimental gravity

Name ‘ Research thema

Kipp Cannon Detection and interpretation of gravitational waves emitted by the collisions

of compact objects

Kenta Hotokezaka | Electromagnetic counterparts of gravitational-wave neutron star mergers

Mamoru Doi Identifications of gravitational-wave sources by wide-field and multi-color op-

tical observations

Masaki Ando Gravitational-wave experiment and astrophysics

Kentaro Komori Gravitational-wave experimental astrophysics

Atsushi Nishizawa | Theories of gravitation and data analysis




2 Projects

Project 3. Formation and characterization of planetary systems

Name

Research thema

Yasushi Suto

Dynamical evolution of orbit and angular momentum of exoplanetary systems

Motohide Tamura

Exoplanet observations and instrumentations

Seiji Sugita

An asteroid sample-return mission and feasibility study for an exoplanet ob-

servation satellite

Satoshi Yamamoto

Physics and chemistry of protoplanetary disk formation

Eiichi Tajika

Diversity and evolution of habitable planets

Hajime Kawahara

Exploring instrumentation and methods for characterizing exoplanets

Hideo Higuchi

Universal biology

Chikara Furusawa

Universal biology




3 Symposia and Meetings

RESCEU Summer School 2022

Place: Online
Time: 2021/8/17 (Wed) — 2021/8/19 (Fri)

Program

8/17 (Wed) morning, chair: Kazuya Takahashi
9:50-10:00  Yasushi Suto Opening remarks
10:00-11:30 (L) Kazunori Akiyama Photographing Black Holes with the Event Horizon Telescope
11:30-12:00 break
12:00-12:15 Fumihiro Naokawa Gravitationally lensed Cosmic Birefringence
12:15-12:30 Hiroto Mitani Physics of the atmospheric escape driven by EUV photoion-

ization heating
8/17 (Wed) afternoon, chair: Kana Moriwaki

14:00-14:15 Jason Kristiano One-loop perturbativity bound in single-field inflation
14:15-14:30  Alessandro Trani A new model of common envelope evolution in binary stars
14:30-14:45 Daiki Watarai Physically consistent waveform for capturing Beyond-GR effects

in the merger phase
14:45-15:00 break

15:00-15:15 Yurina Nakazato [OIIT] emission lines from high-z galaxies in the Epoch of Reion-
ization

15:15-15:30  Jun’ya Kume Abelian-Higgs cosmic string model and its multi-messenger sig-
nals

15:30-16:00 break
16:00-17:30 (L) Kirsten Knudsen High-redshift galaxies and galaxy evolution from an observa-

tional perspective

8/18 (Thu) morning, chair: Christopher Irwin
10:00-10:15 Minori Shikauchi Probing BH population with astrometric satellite Gaia

10:15-10:30  Fumio Uchida Magneto-hydrodynamic evolution of the cosmological magnetic
fields

10:30-11:00  break

11:00-11:15  Betiil Uysal The effect of the baryonic streaming in the formation of the Milky
Way

11:15-11:30 Takuya Tsutsui Observational constraint on axion dark matter with gravitational

waves



3 Symposia and Meetings

8/18 (Thu) afternoon, chair: Kohei Kamada

14:00-14:15

14:15-14:30
14:30-14:45

14:45-15:00
15:00-15:15
15:15-15:30

15:30-16:00
16:00-17:30

Toshinori Hayashi

Koki Tokeshi
Takatoshi Ko

break
Yuta Tarumi
Rui Lan Zhang

break
(L) David Wands

Dynamical disruption timescales of hierarchical triple systems: de-
pendence on the orbital configuration

Two-point correlation in primordial black hole formation

Is the remnant J005311 from the white dwarf binary merger SN

1181 remnant?
Non-LTE analysis of Helium line in kilonova
Fast method for generating mock line intensity maps based on hy-

drodynamical simulations

Primordial black holes from inflation

8/19 (Fri) morning, chair: Purnendu Karmakar

10:00-11:30
11:30-12:00
12:00-12:15

12:15-12:30

(L) Emanuele Berti

break
Yuta Shiraishi

Soichiro Kuwahara

Testing gravity with gravitational waves

Searching for blackholes in non-interacting binaries by photomet-
rical surveys

The recent status of Cherenkov-like burst search

8/19 (Fri) afternoon, chair: Daisuke Toyouchi

14:00-15:30
15:30-16:00
16:00-16:15

16:15-16:30
16:30-16:40

(L: Lecture)

(L) Nami Sakai
break

Honori Inaguma

Hiroki Kawai

Jun’ichi Yokoyama

Astrochemical approach to star and planet formation

Stellar-mass black hole binary mergers by the Kozai-Lidov mech-
anism
The core-halo mass relation in fuzzy dark matter halos

Closing remarks

10



4 RESCEU colloquia

¢ RESCEU Colloquium No. 56
Stefan Ballmer (Syracuse University)
“The Next Leap in Gravitational-Wave Astronomy”
June 2, 2022, 16:00-17:00

11



4 RESCEU colloquia
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5 Project 1. Evolution of the Universe and
cosmic structures

5.1 Activity Report

5.1.1 Lorentzian description of phase transition

Phase transition has been formulated by the path integral in the Euclidian spacetime, but it has a
problem such as the ambiguity of the final state or the existence of the multiple negative modes in the
presence of gravity. We succeeded in formulating the phase transition with the Lorentzian path integral
and in evaluating the transition rate when we take the gravity as a background. We not only reproduced
the traditional results of the Euclidean path integral but also evaluated the formation rate of the bubble
whose radius is different from that of the critical one, which cannot be done in the traditional formalism.
(Yokoyama & Kamada)

5.1.2 Chiral effect in cosmology

Chiral effect, such as the chiral anomaly, plays imprtant roles in cosmology. We succeeded in evaluating
the formation rate of a domain-wall system called the chiral soliton lattice, whose stability is energeti-
cally favored by the chiral effect, by describing it with the Nambu-Goto-like action. We also studied the
coevolution of magnetic field and baryon asymmetry after axion inflation, which are generated with the
help of chiral effect. There is a possibility that they annihilate each other, but we found that it can be
avoided by the right-handed neutrino and succeeded in construcvting a scenario to explain the present
baryon asymmetry of the Universe in the context of axion inflation. (Kamada)

5.1.3 Astrophysical transients: their origins and consequences
The following topics were studied in this project.

e Optical emission immediately after binary neutron star mergers (Shigeyama)
e Observations of the early light from type Ia supernovae (Shigeyama, Doi)
e Influence of Pop IIT supernova explosions on the companion stars (Shigeyama)

e Rapidly rotating massive white dwarfs as a result of binary white dwarf mergers (Kashiyama, Fuji-
sawa, Ko, Tsuna, Shigeyama, Bamba)

e Emission of type IIn supernovae (Shigeyama, Tsuna, Kashiyama, Takei)

e Eruptive mass loss from a massive star a few years before the core collapse (Shigeyama, Takei, T'suna,
Ko)

e Nuclear burning flash at later evolutionary phases of massive stars (Shigeyama, Hasegawa)
e Accretion of C+0O matter onto a neutron star igniting Carbon burning (Shigeyama, Nagarajan)

e Influence of supernova fallback on newborn neutron star magnetospheres (Shigeyama, Kashiyama,
Zhong)
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Rotational equilibria on the 2D Lagrange coordinates (Fujisawa)

The W4 method: a new multi-dimensional root-finding scheme for nonlinear systems of equations
(Fujisawa)

Black hole formation from rotating massive stars (Shigeyama, Kashiyama, Tsuna)

e Emission of type IIn supernovae (Shigeyama, Tsuna, Kashiyama, Takei)

Influence of supernova fallback on newborn neutron star magnetospheres (Shigeyama, Kashiyama,
Zhong)

Here the names of researchers are listed in the parentheses.

5.1.4 Statistical Computational Cosmology

We developed a deep-learning method to detect and classify transient objects in data collected by Tomo-e
Gozen. It was implemented in the Tomo-e Gozen pipeline, and the number of transient candidates was
reduced to about 40 objects per night, which is a factor of 130 smaller than the previous version, while
maintaining the recovery rate of real transients; we obtain a false positive rate of 0.0002 at a true positive
rate of 0.9. We also conducted theoretical calculations to detect pair-instability supernovae though the
nominal 5-year operation of Euclid satellite. Our model is based on recent observations of LIGO-VIRGO
of massive blackhole mergers, and forecast that Euclid detects several hydrogen-poor PISNe. (Yoshida)

5.1.5 Large-Scale Structure of the Universe

Line intensity mapping measures the large-scale distribution of galaxies. We developed a method to
generate mock line intensity maps from dark-matter only simulation data. We confirm that the statistical
properties of the line intensity maps are properly reproduced with our method. Our new method is faster
than detailed cosmological hydrodynamics simulation and thus can produce a large amount of mock data.
They will play a critical role in estimating systematic biases and covariances in analysis of future wide-field
observational data by, e.g., NASA’s SPHEREx. (Moriwaki)

5.1.6 High redshift galaxies

We have launched the Hinotori (star formation History INvestigatiOn TO find Rejuvenatlon) project to
reveal the nature of rejuvenation galaxies (RGs), galaxies that restarted their star formation after being
quiescent. As the first step of Hinotori, we construct the largest RG sample with 1071 sources. These RGs
are selected from reconstructed star formation histories of ~ 9000 z ~ 0 galaxies. We find that the RGs
account for ~ 10 % of the whole sample, and rejuvenation events contribute on average only about 0.1 %
of the total stellar mass in those galaxies but 17 % of the cosmic-star formation rate density today. The
morphology of the RGs is more disk-like than QGs, suggesting that rejuvenation may occur selectively in
disk-like QGs. Our results also suggest that galaxies may have experienced multiple rejuvenation events
since z ~ 1. (Shimasaku)

It has recently been reported that the quenching of satellite galaxies in clusters depends on the orientation
relative to the cluster central galaxies, with satellites along the major axis of centrals being more likely to
be quenched than those along the minor axis. We detect such anisotropic quenching up to z ~ 1 in a large
optically selected cluster catalogue constructed from the Hyper Suprime-Cam Subaru Strategic Program.
We then confirm that the observed anisotropy cannot be explained by differences in local galaxy density
or stellar mass distribution along the two axes. Finally, we argue that the physical origins of the observed
anisotropy should have shorter quenching time-scales than ~ 1 Gyr, like ram-pressure stripping, because,
for anisotropic quenching to be observed, satellites must be quenched before their initial orientation angles
are significantly changed. (Shimasaku)
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5.1.7 High redshift galaxies

The large variation in opacity in the Lya forest at z > 5.5 may indicate that the reionization process
is inhomogeneous. Fluctuations in the UV background (I' model) and IGM gas temperature (T model)
have been proposed to explain this large variation, but they predict the correlation between 7.g¢ and galaxy
density inversely. To explore models that could explain the large variation in 7ef, Lyaemitters (LAEs) are
searched around the sightlines of two quasar (J1137+3549 and J16024-4228) with 7eg ~ 3 and J1630+4012
with 7og ~ 5.5. Using narrow-band imaging with Subaru/Hyper Suprime-Cam, LAE density maps were
created and their spatial distributions are explored. We found that the low 7.¢ region shows excess density
within 20 h—! Mpc from the quasar sightlines, while the high 7.g region is deficient in LAEs. These observed
Tefi-galaxy density relations consistently support the I' model in all three fields. (Kashikawa)

5.1.8 Dust-enshrouded growth of galaxies and supermassive blackholes

We conducted an ALMA-Herschel joint analysis of 180 sources detected in 33 lensing cluster fields
by the ALMA Lensing Cluster Survey (ALCS) at 1.2 mm. Our main sample comprised 141 securely
detected sources, and we performed far-infrared spectral energy distribution modeling to derive physical
properties related to dusty star formation for 125 of these sources. The redshift distribution suggests
an increasing fraction of z ~ 1 — 2 galaxies among fainter millimeter sources. The median intrinsic (de-
lensed) star formation rate for the main sample was significantly (~3 times) lower than that of conventional
submillimeter galaxies at similar redshifts[67]. We also presented multi-wavelength mosaics and photometric
catalogs, constructed from reprocessed archival Hubble Space Telescope (HST) and Spitzer data. The final
catalogs contain 218,000 sources, covering a combined area of 690 arcmin?, a factor of ~ 2 improvement over
the currently existing photometry. These serve as valuable tools for future ALMA surveys and follow-ups
with JWST. Our multi-wavelength approach will enable better constraints on photometric redshifts and
stellar masses, aiding in the identification of high-redshift candidates and contributing to our understanding
of the Epoch of Reionization and the formation of the first galaxies[67] (Kohno, Shimasaku).

We utilized ALMA to investigate G09.83808, a strongly-lensed submillimeter galaxy (SMG) at z = 6.0.
Our observations detected various line emissions such as [N II] 205 ym and [O III] 88 um, as well as
dust continuum emissions. The compact spatial distribution of the dust suggests that G09-83808 could
be a progenitor to compact quiescent galaxies observed at z ~ 4. We also noted a declining trend in the
[N II] line to infrared luminosity ratio, analogous to trends seen in local luminous infrared galaxies. We
estimated the gas-phase metallicity of the galaxy to be Z ~ 0.5 — 0.7Z5, indicating that G09.83808 is
among the early galaxies to experience chemical enrichment[66]. Furthermore, we detected the CO(12-11)
line and investigated the physical properties of the multi-phase interstellar medium in G09.83808. Our
findings suggest that the molecular gas is concentrated in the central 0.5 kpc region and is both warm
(Tixin ~ 320 K) and dense. We find the elevated CO luminosity ratio Lcoi2—11)/Lcoe—5) = 1.1 £0.2,
which is consistent with those in local active galactic nuclei and 6 < z < 7 quasars. We suggest that
(G09-83808 hosts a dust-obscured growing supermassive black hole, which illuminates the surrounding ISM
to form X-ray dominated regions, at the end of cosmic reionization[564] (Kohno).

We investigated the feasibility of [C II] 158 um line intensity mapping using the integrated superconduct-
ing spectrometer (ISS) technology, which has been demonstrated by DESHIMA2.0 on the submillimeter-
wave telescope ASTE[BS, b6], to obtain new constraints on the [C II] luminosity functions and the roles of
dust-obscured star-formation in the epoch of reionization (Kohno, Moriwaki, Yoshida).

5.1.9 X- and v-ray study of high-energy astrophysics

Our aim is understanding high energy phenomena in the universe, such as supernova explosions and
their remnants, compact stars such as neutron stars and blackholes, and active galactic nucleus. Such high
energy objects emit X-rays and gamma-rays, thus we observe such high energy photons using balloons and
satellites.

This year we studied the shock structure and heating mechanism in supernova remnant (SNR) systems.
We have made detailed spatially resolved spectroscopy of young SNRs, SN1006, and found that the tem-
perature of the heated interstellar medium become higher in the scale of ~0.6 pc. The increase is smaller
than expected from the Rankine-Hugoniot relation of ideal gas, but we still discuss what makes the de-
screpancy. The particle acceleration on the SNR shocks are also examined; we found that the enhancement
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of synchrotron X-rays due to the shock-cloud interaction [83], which is the third sample for such a case.
The detailed analysis of an old gamma-ray SNR, G298.640.0, and confirmed as one of the oldest sample
found ever [G3].

The accreting neutron stars are also studied into the detail. We have phase-resolved (both orbital and
spin) spectroscopy of Cen X-3, and found that the key parameter of time variability is absorption [04].
Together with same analysis with Her X-1, another accreting neutron star, a toy model of the geometry of
accreting pulsars has been constructed, which well explain both models.

We also study on the detector development for the near future missions. For the XRISM, to be launched
on the Japanese fiscal year 2023, we fixed the performance verification targets. We also developed the
Monte-Carlo based data analysis method for pile-uped data of the X-ray CCD onboard XRISM. For Cipher
mission, the first imaging polarimetory cubesat in the hard X-ray band, we developed the new analysis
method to increase the sensitivity sensitivity several fold. The GRAMS mission, a new MeV gamma-ray
mission, we succeeded to have a chance of the balloon Engineering Demonstration Experiment in the fiscal
year of 2023, and started the preparation (Bamba).

5.1.10 Observational cosmology using cosmic microwave background

We conduct cosmology research by observing Cosmic Microwave Background (CMB) through observa-
tional projects: POLARBEAR, Simons Array, and Simons Observatory.

The POLARBEAR experiment and its successor, Simons Array, are designed to measure both inflationary
signature and the gravitational lensing effect in CMB polarization. POLARBEAR has concluded its obser-
vation campaign in 2016, and our focus has been on data analysis. We realized the improvement of the
constraint on the tensor-to-scalar ratio r. Recently we are proceeding a new time-domain data analysis of
the POLARBEAR datasets for searching the Axion-like particle (ALP). For Simons Array experiment, we
are focusing on both of data analysis and deployment of the telescopes. Science observations are conducted
with the first telescope, and we are analyzing the data in parallel with analysis pipeline development to
achieve the improved result on the inflationary signature and ALP search. As for the second telescope,
test observations and deployment are proceeded. We are providing feedbacks by the analysis of the test
observations.

The Simons Observatory experiment is scheduled for the first light in 2023. We are deploying three
0.4-m Small Aperture Telescopes (SATs), which are dedicated for exploring inflationary signature, and a
6-m Large Aperture Telescope (LAT), which will measure (or constrain) the sum of neutrino masses, and
the dark content of the universe. We have primarily focused on the development of SATSs, especially the
cryogenic optics tube, the cryogenic continuously rotating half-wave plate (HWP) system, and the wiregrid
calibrator, and made significant progress in fabricating and commissioning. Currently, we also are woking
on the deployment work at the Chile site.

We also focus on developing techniques for high-performance computation (HPC) enabling data analysis
for Simons Observatory as well as Simons Array, producing order-of-magnitude larger data volume than
the previous instruments. While improving computational throughput, we need to improve on the analysis
systematics as well. One of our emphasis has been to reduce systematic leakage from the E-modes to
B-modes, developing technique to achieve this in a computationally feasible manner. In doing so, we
have developed a new pipeline module by taking advantage of GPUs and have validated it with simulated
datasets. (Kusaka, Kiuchi, Takeuchi)

5.1.11 Solid grains ejected from terrestrial exoplanets as a probe of the abun-
dance of life in the Milky Way

Searching for extrasolar biosignatures is important to understand life on Earth and its origin. Astro-
nomical observations of exoplanets may find such signatures, but it is difficult and may be impossible to
claim unambiguous detection of life by remote sensing of exoplanet atmospheres. Here, another approach
is considered: collecting grains ejected by asteroid impacts from exoplanets in the Milky Way and then
travelling to the Solar System. The optimal grain size for this purpose is around lmicron, and though
uncertainty is large, about 10° such grains are expected to be accreting on Earth every year, which may
contain biosignatures of life that existed on their home planets. These grains may be collected by detectors
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placed in space, or extracted from Antarctic ice or deep-sea sediments, depending on future technological
developments. (Totani)
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neural network model for event reconstruction of large effective area Compton cameras”, “ADASS Conference
XXXII”, online, 2022, October 30-November 4 (poster)

[151] Minami,T., Bamba, A., Terada, Y., “XRISM ¥ NuSTAR O [RIRHERIC X 2 @S 0GR 2 O IEEIHBUR D1
&, “XRISM Core-to-Core Science Workshop 2022”, Saitama, 2022, October19-21 (poster)

[152] Minami,T.,Katsuragawa,M,Nagasawa,S., Takeda,S., Takahashi,T., Tsuzuki,Y.,Watanabe,S., “Study of perfor-
mance and response of thick CdTe double-sided strip detectors for various fields”, “The 4th workshop on
quantum beam imaging”, Riken Wako, 2022, September26-27 (oral)

[153] Ichihashi, M., Kasuga, T., Odaka, H., Bamba, A., Kato, Y., Katsuda, S., Suzuki, H., Nakazawa, K., “The
discovery of spatial variation of electron temperature in the northwestern region of SN1006”, “Supernova
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[178] K. Kohno, “Unbiased surveys of dust-enshrouded galaxies using ALMA” The 7th Chile-Cologne-Bonn Sym-
posium, Physics and Chemistry of Star Formation — The Dynamical ISM across Time and Spatial Scales,
Puerto-Varas, Chile, September 26-30, 2022

[179] K. Kohno, “Galaxy surveys with AtLAST/LST and IFUs” Lorentz Center Workshop, Mapping the Invisible
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[190] Yeung, P.K., “Multiwavelength studies of G298.6-0.0: Possibly one of the oldest GeV supernova remnants”,

Core of Research for the Energetic Universe (CORE-U), Hiroshima University, Higashihiroshima, Japan,
November 2022
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27

6 Project 2. Gravitational-wave
astrophysics and experimental gravity

6.1 Activity Report

6.1.1 Kipp Cannon group

Our research group studies black holes, neutron stars, exotic astrophysical objects, and the Universe
using gravitational waves, and electromagnetic observations. Gravitational waves are waves of spacetime
curvature generated by the movement of mass and momentum. There are many reasons why gravitational
waves are an interesting way to explore the sky. Because gravitational waves are generated by physical
processes different from those that produce light or radio waves (which are generated by the movement of
electric charges and currents), gravitational waves carry different information about their sources than is
carried by electromagnetic waves. Gravitational waves interact weakly with matter allowing them to pass
through material that would be opaque to radio waves and light. For example we expect that gravitational
waves can escape the dense deep cores of supernovee, and show us the earliest moments of the Big Bang.
The Earth, too, is transparent to gravitational waves, so gravitational-wave telescopes can see the sky below
them through the Earth as easily as they can see the sky above, allowing gravitational-wave telescopes to
monitor the whole sky continuously, day and night. Gravitational waves are the only significant form of
energy expected to be radiated by some of the most exotic events in the universe like the collisions of black
holes. However, because everything is nearly transparent to gravitational waves, it is very difficult to build
a device that can detect them, and the first detection of this form of energy was only achieved in 2015. It
is even more difficult to build a device that can generate gravitational waves of any measurable amplitude,
and so astronomy, that is the observation of intense naturally occurring sources of these waves like the
collisions of black holes, provides our only opportunity to explore this aspect of the natural world.

Our research group’s members are members of the LIGO Scientific Collaboration and KAGRA Collabo-
ration, and we analyze data collected by the two LIGO gravitational-wave antennas in the United States,
the Virgo antenna in Italy, the GEO600 antenna in Germany, and the KAGRA antenna in Japan.

The Advanced LIGO and Advanced Virgo antennas were not collecting data during FY2022, and had
not been doing so since March of 2020 at the start of the pandemic. The fourth observing run for the
Advanced detectors, “O4”, began shortly after the start of the FY2023 academic year. Nevertheless,
analysis of previously recorded data continued during this time, as well as research and development of new
techniques for analyzing and extracting information from the data, which we hope to apply in the future.
Members of our group are active in all aspects of observational gravitational-wave astronomy, the following
are some highlights from FY2022.

Searches for Compact Object Collisions

When heavy stars exhaust their fuel supply they undergo gravitational collapse. The end state of this
process can be a neutron star or a black hole. There are many of these in the Universe, and occasionally
they collide with one another. These collisions are very powerful sources of gravitational radiation. Since
the first detection of gravitational waves from the collision of a pair of black holes in September, 2015, we
have been able to study the behaviour of strongly curve spacetime.

This past academic year the LIGO, Virgo, and KAGRA collaborations published the results of a search
for collisions of black holes with masses below 1 solar mass (doi:10.48550/arXiv.2212.01477). There are
theoretical reasons to believe that the normal life cycle of stars cannot result in such low mass black
holes, only exotic processes such as large density fluctuations in the early Universe or some dark matter
models could result in such objects existing at all. The discovery of such an object could transform our
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understanding of nature. The search produced no evidence of such objects, and so constraints on primordial
black hole production and dissipative dark matter were inferred.

Overlapping of gravitational-wave signals in the future gravitational-wave detectors

Future terrestrial gravitational wave detectors such as Einstein Telescope and Cosmic Explorer are ex-
pected to observe a large number of gravitational wave events (hundreds of thousands of events per year)
from binary coalescences of neutron stars and black holes. If the number of events is too large, the gravita-
tional wave signals in the detector data will overlap each other, which might affect the parameter estimation
of an individual gravitational wave signal. In the worst case, these signals cannot be separated and make
their detections difficult. To study this issue, we first performed a simulation to randomly generate grav-
itational wave events and estimated how much gravitational wave signals would overlap. Then, it was
investigated how much the error of parameter estimation and the estimation bias are degraded when the
gravitational wave signals overlap. As a result, it was found that the parameter estimation was hardly
affected unless the waveforms of the overlapping gravitational wave signals were very similar. Therefore,
our conclusion is that the overlaps of gravitational wave signals can occur frequently but do not cause a
problem for parameter estimation in the future gravitational wave detector [I'7].

Short gamma-ray burst search with the CHIME radio telescope

Short gamma-ray bursts (SGRBs) are energetic and explosive outbursts lasting less than two seconds.
sGRBs are thought to originate from compact object mergers such as binary neutron star and black hole-
neutron star collisions. Since the collisions of compact objects is also be a source of gravitational waves,
the detection of gravitational wave signals associated with sGRBs would impose important constraints
on the origin of sSGRBs. However, only one gravitational wave signal associated with a SGRB has been
observed so far. In this study, in order to increase the samples of sGRBs that are the target of gravitational
wave surveys, we will attempt to detect SGRBs where only a faint light can be observed. In FY2022,
Ms. Shikauchi visited the University of British Columbia, and in collaboration with the group leading
the Canadian Hydrogen Intensity Mapping Experiment (CHIME) experiment developed a search for the
synchrotron afterglows of neutron star collisions based on the the work in [20]. The ultimate goal of this
work is to use neutron star collision remenants identified with CHIME to constrain a search for gravitational
waves from these systems to increase the likelihood of successfully associating a gravitational-wave signal
with an electromagnetic counterpart.

6.1.2 Cosmology, Hubble parameter from Black Hole Collisions

Because when two black holes collide their masses can be inferred from the phase evolution of the
gravitational waveform, and because the amplitude of the emitted gravitational waves is unambiguously
determined by the masses of the two black holes, the phase evolution and the observed amplitude of a
gravitational wave, together, reasonably precisely indicate the distance of the source of the waves from
Earth. If, in addition, the host galaxy and its red shift can be known, then from a collection of such
observations a distance-red shift relationship can be measured quite accurately. This is the so-called
“dark sirens” technique for inferring the Hubble parameter. Unfortunately, in practice, a specific host
galaxy cannot be identified for a black hole collision observed only with gravitational waves, but one can
marginalize over all the galaxies consistent with its location and still infer a Hubble parameter, with the
penalty being that many more black hole collisions must be observed to make a measurement with useful
precision.

In the past, the black hole collisions used for these studies were selected by hand, by the researchers
choosing “good ones”. This risks introducing a confirmation bias or self-selection effect into the results.
Members of our group are working on generalizing the technique to allow all of the black hole collisions
from a gravitational wave catalogue to be used, replacing manual selection of good signals with the P(astro)
parameter — using the probability a given signal is of astrophysical origin to weight its contribution to the
result.

Origins of Compact Binaries with the Astrometric Satellite Gaia

The astrometric satellite Gaia is able to observe non-interacting black hole-luminous companion (BH-LC)
binaries and estimate BH mass by observing the motion of the LCs. Since the orbital period of detectable
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BH-LC binaries should be longer than that of BH X-ray binaries in the Milky Way and extragalactic binary
BHs, Gaia may reveal a different BH population from X-ray and gravitational wave observations. The next
data release was held in June 2022 and included information of binaries, which has attracted a great deal
of attention. Up to now, there are about ten papers studies theoretically predicting the number of BH-LC
binaries observed with Gaia. Two BH-LC binaries have already been confirmed (El-Badry, et al. 2023a,
Tanikawa et al. 2022, El-Badry et al. 2023b). To shed additional light on these observations, in FY2022
we used the binary stellar population synthesis code BSE to model the development of black hole binaries
and investigate their properites. We found various correlations among the parameters of the binaries,
such as the masses and orbital period, and also with its extrinsic properties like the height of the binary
from the galactic plane. We found these correlations differ depending on the binary evolution parameters,
suggesting that observations of large numbers of such binary systems with Gaia could be used to constrain
these unknown parameters.

Neutron Star Interiors

The interior structure of neutron stars is determined by the laws of nuclear physics, however we don’t
have a good understanding of the behaviour of matter in the extreme pressure and density conditions found
deep in the interior of a neutron star, therefore not much is known about the interior structure of these
objects. The gravitational waves emitted during the collisions of neutron stars with one another will carry
information about their interior structure. Careful study of gravitational waves from neutron star collisions
can, therefore, teach us about the properties of matter in regimes inaccessible to experiments here on Earth.
Models of neutron stars can be used to connect theories of the properties of nuclear matter to features found
in the gravitational waves emitted during their collisions. In collaboration with Prof. Hotokezaka’s neutron
star modelling group, and the nuclear physics group at the University of Tokyo, members of our group
are making this connection from theory to observation, and investigating the ability of gravitational-wave
detectors to detect a hadron-quark phase transition in the core of neutron stars. The specific goal is to
determine if the transition is a continuous cross-over or a first-order phase transition.

These two different scenarios predict different gravitational waveforms emitted from binary neutron star
mergers, and it has been found that the difference appears mainly in the merger or the post-merger phase
rather than in the inspiral phase. The main frequency band of gravitational waves after the coalescence
of binary neutron stars is 2kHz to 4kHz, which is higher than the most sensitive frequency band of the
current detectors, for example LIGO. Even with the extremely high signal-to-noise ratio of GW170817,
the highest SNR signal seen, we still saw no evidence of a post-merger signal in that gravitational wave.
It was hidden by the detector noise. Therefore, in order to use gravitational wave observations to answer
the question how the quark-hadron phase transition takes place, a detector which has better sensitivity
in the high frequency range and an appropriate analysis method are needed. The goals of this study are
figuring out whether current or currently proposed future detectors can solve this problem, what kind of
events are suitable for this purpose, and what kind of analyses are effective. This work formed the basis of
Ms. Harada’s master’s thesis, which she succesfully defended this academic year.

Tests of General Relativity

Only with the observations of black hole and neutron star collisions in recent years have we had access to
observational tests of the behaviour of gravitational fields in the strong field regime. There are many theories
of gravity besides Einstein’s theory of general relativity that are seriously considered, but, unfortunately,
there are few predictions of what gravitational waves from black hole collisions might look like if these other
theories of gravity are correct. Without specific predictions from alternative theories of gravity, it is difficult
to construct tests that might falsify general relativity or its alternatives. One approach is to construct a
parameterized phenomenological description of the family of gravitational wave signals from black hole
mergers in general relativity, and then introduce perturbations of the parameters, thereby constructing
non-GR black hole merger-like waveforms. The signals observed in the gravitational-wave detector data
can be compared to these and constraints placed on the values of the perturbation parameters, thereby
constraining how much of a deviation from general relativity’s predictions is admissible. Members of our
group are attempting to construct a novel test of this type. The work is on-going, and might lead to a
new constraint on general-relativity, or if not, at least a statement of what sort of future detector would be
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required to make the measurements required to perform the tests that are being designed.

Test of General Relativity in Strong Gravitational Fields

General Relativity (GR), the standard theory of gravity, is only a low-energy effective theory, although it
explains well the observations made so far, and it is bound to break down at some point when we approach
the strong gravity region. Specifically, it has difficulties in predicting the singularity at which the laws of
physics break down, and in the impossibility of renormalization in terms of quantum theory. In order to
construct a theory of gravity that avoids these difficulties, it is essential not only to conduct theoretical
research but also to devise an appropriate method to analyze the obtained gravitational wave data and
to analyze the actual data in order to extract significant information from the data. Therefore, we are
devising a quantitative analysis method for the merge stage of the binary black hole coalescence process,
which is the most gravitationally intense region available through observations, and analyzing the actual
data with the aim of extracting information that will lead to an understanding of the physics of the strong
gravitational field.

Test of gravity with gravitational-wave polarizations

One of the ways to test gravity in the dynamical strong-field regime is to count the polarization modes
of gravitational waves. Not all gravity theories predict the same number of polarization modes. There are
two tensor modes in general relativity, while three or more polarization modes can be found in extended
theories of gravity. In other words, incorrect gravity theories can be ruled out by examining the number
of polarization modes in the observed gravitational-wave signals. We constructed the mixed polarization
model including a scalar polarization as an additional one beyond general relativity and analyzed the actual
observation data of the gravitational wave detectors with the scalar-tensor polarization model. We found
no signs of polarizations inconsistent with the prediction of general relativity. Therefore, we obtained a
new result that supports the correctness of general relativity.

Observational constraint on axion dark matter with propagating gravitational waves

Most of matter in the Universe is invisible, which is called dark matter. A candidate for dark matter is the
axion. If they exist, axions form clouds in a galactic halo and amplify and delay a part of gravitational waves
propagating in the clouds. The Milky Way, from within which we observe the Universe, is surrounded by a
dark matter halo potentially composed of a number of axion patches. Thus, if an axion cloud comprises our
galaxy’s dark matter, characteristic secondary gravitational waves are always expected right after a reported
gravitational-wave signal from a compact binary merger. We searched for the secondary gravitational waves
with a method optimized for the time delay and the amplification. We found no significant signal and
constrained the axion coupling to the parity violating sector of gravity, which is at most 10 times improved
from a previous study, Gravity Probe B.

Stochastic Gravitational-wave Background

While some gravitational wave sources like GW170817 are close, loud, and infrequent, we also anticipate
classes of gravitational wave sources that are distant, quiet, and numerous. Rather than distinct, impul-
sive, signals being detected from such sources we expect to observe them collectively as a diffuse “glow”
of random gravitational radiation coming from all directions on the sky — a stochastic gravitational-wave
background. Spacetime fluctuations in the very early Universe are expected to contribute to a cosmo-
logical gravitational-wave background, but that is expected to be undetectable with modern equipment.
A detectable astrophysical stochastic background of gravitational radiation could come from more recent
processes, for example black hole collisions in the early Universe, a population of cosmic strings, and so
on. Many of the possible sources of a stochastic gravitational wave background are hypothetical; their
discovery would be a tremendous breakthrough. Some sources of stochastic gravitational waves might not
be uniformly distributed on the sky, for example if they are confined to galaxies and are close enough that
the separation of galaxies on the sky is significant, or if, for example, there are gravitational lenses close to
us that magnify and make some parts of the sky appear brighter than others. Members of our group are
collaborating with researchers at the California Institute of Technology and Pennsylvania State University
to develop and conduct a search for anisotropic stochastic gravitational waves.
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Other Gravitational-wave Sources

A number of solutions of Einstein’s field equation for gravity are known that allow a vehicle to be
transported through the surrounding spacetime at speeds greater than the speed of light. Most such
solutions of the field equation share the property of requiring material with negative mass to form the
require spacetime curvature. Although anti-gravitating tensile material is believed to exist, and is believed
to have been responsible for large scale properties of our Universe today, there is no evidence that anti-
gravitating negative energy density material exists, and some hypothesize that its existence is forbidden
due to some yet undiscovered law of nature. Another property the solutions all possess is that they quickly
decay to flat space in their exteriors, which is usually imposed to simplify the mathematics involved in
finding such faster-than-light solutions. What if these two properties are connected? Perhaps faster-than-
light solutions can be found that include an out-going radiation component, and perhaps those solutions
don’t require negative mass. An everyday analogy can be seen: boats exist, boats move faster than the
velocity of surface waves in water, but boats that produce no wake while doing that are likely impossible.

Therefore, for fun, members of our group have hypothesized what the gravitational-wave wake from a
faster-than-light spacetime bubble might look like, and have conducted a search for these signals in 1 year
of data of LIGO and Virgo from O3. Measuring the sensitivity of the search, we can use a null result to
put constraints on the rate of near-Earth flybys of faster-than-light vehicles. This work will be published
shortly. Although this was conducted for amusement, a bi-product of this work has been the discovery
that the waveform model is particularly well suited for identifying a novel class of “glitch” waveforms in
the detector data, and we hope to see it help with noise mitigation efforts in the future.

Improvements of gravitational-wave detector sensitivity

Globally correlated magnetic noise

Correlation analysis between data obtained from multiple detectors is essential to detect the stochastic
gravitational-wave background. However, when global disturbances affect gravitational wave detectors,
correlations due to other than gravitational waves can appear and become a source of noise even in two
detectors that are sufficiently far apart. One of the main sources of such a correlation noise is the global
magnetic field, called the Schumann resonance. Based on the Fisher analysis, we discuss the impact of the
correlated magnetic noise on the detection of the stochastic gravitational-wave background. We show how
much the detector sensitivity to the stochastic gravitational-wave background is affected in the presence of
the correlated magnetic noise. We furthermore show that a network observation combining more than 3
detectors is quite essential and that KAGRA may play an important role in better separating the correlated
noise.

Study on sensitivity improvement for the future space-beased gravitational-wave detectors

The Japanese future space-based gravitational-wave detector, DECIGO, aims at detecting primordial
gravitational waves generated by inflation in the early Universe. However, as the prediction for the am-
plitude of the inflationary gravitational waves is highly uncertain, it is necessary to improve the target
sensitivity of DECIGO and enhance the possibility of the detection of the inflationary gravitational waves.
The current target sensitivity of DECIGO is limited by quantum noise (shot noise and radiation pressure
noise). However, squeezing is not available for DECIGO because of its long arm length and large optical
loss. In the case, the quantum locking method that controls main cavity length by feeding back the signal
from an external small auxiliary cavity can be used to reduce the radiation pressure noise. We extended the
quantum locking by incorporating optical spring and showed that the radiation pressure noise is reduced
further and the sensitive frequency band broadens [IG].

Searching for short gamma-ray burst afterglows with the radio telescope Canadian Hydrogen
Intensity Mapping Experiment (CHIME) (Shikauchi)

The aim of this work is to understand the origin of short gamma-ray bursts (sGRBs), explosive events in
the Universe. We are trying to detect sSGRB afterglows with the radio telescope CHIME. In the last fiscal
years, I spent one year at the University of British Columbia, Canada, and developed a code to remove
aliases which can be a cause of false positives. Aliases are also known as folding noise. They appear when
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we try to digitize higher frequency components than a sampling frequency. CHIME takes a skymap in
a day called “ringmap” and aliases are seen as artificial objects with the same brightness as true ones.
Thus, true objects are duplicated by aliasing. One of the features of aliases is that their position changes
by frequency. If an effect of noise raised by human activities such as mobile phones, TV broadcasts, and
airplanes is not negligible in a specific frequency, data in the frequency band will be removed from the
analysis. That means brightness of pixels where aliases in a frequency band exist can change day by day.
They can induce false positives for searches for sSGRB afterglows. Considering the position of aliases move
in frequency unlike true objects, we constructed a filter based on linear regression model and applied it to
data in wide frequency band so that aliases move large enough to distinguish if they are aliases or not. We
successfully reduced brightness of aliases to a few percents of the true sources.

Theoretical estimates of black hole—luminous companion binary search with the astrometric
satellite Gaia (Shikauchi)

The astrometric satellite Gaia has been supposed to detect black hole (BH)-luminous companion (LC)
binaries by observing LCs in the visible light band. The recent data release in 2022 first revealed information
about non-single stars and two BH-LC binaries have been confirmed (El-Badry+2023a, Tanikawa+2022,
El-Badry+2023b). As more BH binaries get detected with Gaia, we wondered if we could find correlations
between binary parameters seen in X-ray BH binaries. By using binary population synthesis code BSE
(Hurley+2000, 2002), we theoretically estimated correlations of binary parameters and spatial parameters,
i.e. the distance from the Galactic plane and the velocity perpendicular to the plane, of detectable BH-LC
binaries with Gaia. To that end, we first predicted a spatial distribution of detectable BH-LC binaries
in the Milky Way by numerically calculating the motion of each binary after BH formation. Finally, we
found some significant correlations which could give us a clue for binary evolution models such as supernova
models, the strength of BH natal kick (Shikauchi+2023).

On the Testability of the Quark-Hadron Transition Using Gravitational Waves (Harada)

In high-density matter, such as that found at the core of a massive neutron star, the quark degrees
of freedom may be liberated. However, it is not known how the transition from hadron matter to quark
matter occurs. The maximum density of remnants of the binary neutron star mergers is believed to
reach about five times the nuclear saturation density. The gravitational waves emitted from them are
sensitive to the equation of state around the quark-hadron transition. However, the frequencies involved
are typically above 2 kHz, which is considerably higher than the most sensitive frequency range of current
detectors, for example LIGO. In this study, numerical relativity waveforms calculated for two representative
quark-hadron transition scenarios were used, and Bayesian model selection was performed to investigate
the distinguishability of correct scenarios using future detectors. In the analyses, it was assumed that
the relatively low density equation of state around nuclear saturation densities is completely known from
accumulated observations. Under this assumption, it was found that determining the correct scenario
is challenging with observations with the design sensitivity of Advanced LIGO, but there is a realistic
possibility with third-generation detectors or future detectors specialized for post-merger signals.

Test of General Relativity in Strong Gravitational Fields (Watarai)

General Relativity (GR), the standard theory of gravity, is only a low-energy effective theory, although it
explains well the observations made so far, and it is bound to break down at some point when we approach
the strong gravity region. Specifically, it has difficulties in predicting the singularity at which the laws of
physics break down, and in the impossibility of renormalization in terms of quantum theory. In order to
construct a theory of gravity that avoids these difficulties, it is essential not only to conduct theoretical
research but also to devise an appropriate method to analyze the obtained gravitational wave data and
to analyze the actual data in order to extract significant information from the data. Therefore, we are
devising a quantitative analysis method for the merge stage of the binary black hole coalescence process,
which is the most gravitationally intense region available through observations, and analyzing the actual
data with the aim of extracting information that will lead to an understanding of the physics of the strong
gravitational field.
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Testing Metric Affine gravity (Karmakar)

Despite the phenomenological success of General Relativity (GR), particularly in the small scale, chal-
lenges persist in understanding phenomena such as galaxy clusters, cosmological acceleration, quantization,
and fermion coupling to gravity. Metric Affine Gravity (MAG) has garnered attention for its potential to
address these challenges by offering insights into gravity as a gauge theory, fermion coupling to gravity, and
the acceleration of the universe.

In GR, the affine connection is solely expressed through the Levi-Civita connection, which is derived from
the metric field, thereby representing the spacetime geometry through the metric alone. However, in Metric
Affine Gravity, the affine connection and vierbein are treated as fundamental fields to describe spacetime
geometry. Consequently, spacetime can exhibit not only wraps and curves (metric) but also twists (torsion)
and disformation (non-metricity). GR can be considered as a subclass of this extended theory of gravity
and should be tested against observations.

While the disformation aspect of MAG remains understudied, it holds great potential. However, some
parts of the theory exhibit instability. A subclass known as symmetric teleparallel gravity, which incorpo-
rates non-metricity, shows greater stability. As a result, it is a promising candidate to be tested against
observations, such as on galaxy cluster scales and gravitational waves. Progress is being made in under-
standing spacetime within this framework.

When handling these theories against observations, caution must be exercised. GR has a strong presence
in processed data, which may need to be re-evaluated for general purposes. Therefore, it is crucial to
carefully consider the compatibility and implications of these alternative theories with existing observational
data.

Axion dark matter search with gravitational waves (Nishizawa, Tsutsui)

Most of the matter present in our universe is composed of unknown dark matter, and there have been
many dark matter candidates proposed so far. One of the candidates is the axion, and it is believed that
there are multiple axion clouds within the halo of the Milky Way. When gravitational waves propagate
through these axion clouds, gravitational waves induce the decay of axions into gravitons, which results
in an amplification of the gravitational wave amplitude and a time delay due to the changes of the prop-
agation speed. In other words, such specific gravitational wave signatures should be detected around the
observational data of previously detected gravitational waves from compact binary mergers. By searching
for such distinctive gravitational wave signals, we have placed constraints on the gravitational coupling
constant of axions that are up to about 10 times stronger than previous one [[9].

On the other hand, we are also engaged in a collaborative research for tabletop experiments searching for
axions conducted in the Ando Laboratory, Graduate School of Science, Department of Physics, participating
from the theoretical and data analysis aspects.

Development and application for a Cherenkov radiation-like gravitational wave detection

system (Kuwahara)

We assumed the existence of superluminal objects (including artificially engineered superluminal space-
craft by extraterrestrial life forms) emitting transient gravitational waves and developed a detection system
to explore them. Assuming gravitational waves are generated in the form of shock waves, we created
waveform templates based on electromagnetic Cherenkov radiation. Investigations were conducted on one
year of O3 (Observation 3) data. The ranking statistics obtained from this search enabled constraints on
parameters such as the power, velocity, and distance of superluminal objects from the observer’s location.
By chance, the specialized waveform model introduced here was found to match very well with certain
transient noise events known as ”glitches.” We are currently preparing these results for publication.
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Exploration of primordial stochastic gravitational waves from the early universe through

foreground gravitational wave subtraction (Kuwahara)

We revisited the latest research on subtraction of foreground from neutron star and black hole binaries.
To determine the sensitivity of current gravitational wave detectors to each anisotropic mode, we developed
code to calculate the Overlap Reduction Function for the spherical harmonic modes of each detector and
recalculated the Fisher information matrix based on its definition. Utilizing the aforementioned Overlap
Reduction Function, we created the code to calculate this Fisher information matrix.

Stochastic gravitational-wave background search in the presence of globally correlated mag-

netic noise (Nishizawa)

Once the third-generation gravitational wave (GW) detectors such as Einstein Telescope and Cosmic
Explorer are completed, the detection of a GW background from a number of compact binary mergers will
be well within reach. Additionally, there is the possibility of detecting a cosmological GW background
originating from the early universe.

A cross-correlation of data from multiple detectors is used for the detection of a GW background. How-
ever, when disturbances of global origin exist on the Earth and affect the GW detectors, correlations other
than GWs may appear even between detectors that are sufficiently far apart. This could lead to false
detections of a GW background. Particularly, a global magnetic field known as the Schumann resonances
could potentially have a significant impact on GW detectors in the future.

To address this, we conducted research on parameter estimation for GW background searches, considering
a correlation noise originating from the Schumann resonances. In the presence of four second-generation
detectors (LIGO, Virgo, KAGRA), we performed Fisher analysis with an analytical model of the Schumann
resonances. The results showed that if the Schumann resonances can be appropriately modeled, correlation
noise would not significantly affect the search sensitivity. However, we also found that inadequate modeling
could bias the parameter estimation results. These research findings were published in the paper [21].

Displacement noise-free gravitational wave detector with neutron interferometers (Nishizawa)

Observing primordial gravitational waves (GWs), believed to be a direct evidence of inflation in the early
Universe, is an important goal in GW researches. However, the sensitivity of ground-based detectors to
primordial GWs is limited by low-frequency noises such as seismic vibrations and thermal fluctuations of
mirrors. One solution to this challenge is the concept of a displacement noise-free interferometer (DFT),
where displacement noise can be canceled out. In a laser DFI, the displacement noise can be completely
eliminated by appropriately combining signals, while retaining the gravitational wave signal. However, a
drawback of this approach is that it lacks sensitivity in the low-frequency range (0.1 — 1 Hz), which is the
frequency band of interest for observations of primordial GWs.

To address this, we proposed the idea of a DFI with neutron interferometers, which can have good
sensitivity around 1 Hz, thank to the velocity of neutrons much slower than that of laser light [I'7]. In
the original neutron DFI using Mach-Zehnder interferometers, neutrons were incident from both sides.
However, preparing bidirectional neutron sources posed various challenges. To overcome this, we devised
a practical improvement: a neutron DFI where neutrons with different velocities are incident from one
direction [IR, 20]. Currently, we are progressing with the consideration of principle verification experiments
using this setup for the neutron DFI.

People and Things

During the 2022 through 2023 academic year, two of our Master’s students, Ms. Harada and Mr. Watarai,
successfully defended their theses and continued on to the doctoral program. Omne doctoral student,
Dr. Tsutsui, successfully defended his thesis and has found employment in the field of modelling and
forecasting of stochastic processes.
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6.1.3 Kenta Hotokezaka group

Kilonova is one of the electromagnetic wave-counterparts associated with binary neutron star mergers.
The radioactive decay of the neutron-rich material released at the time of coalescence is the energy source
of kilonovae. It is important that this phenomenon is particularly related to the origin of heavy elements.
We conducted research from both observational and theoretical perspectives on kilonovae [PH, 28, 28, 24].

A kilonova enters the nebular phase, where emission lines arising from atomic transitions escape from
the ejecta without interaction. Thus, observing the nebular spectrum will provide us valuable information
on the elements synthesized in merger ejecta. We developed a model for the kilonova nebular emission
including all the r-process elements. With this model, we found that the late-time Spitzer observations of
the kilonova AT2017gfo can be explained by the emission line of doubly ionized tungsten or selenium [25].

We also continued to study the multi-wavelength behaviour of non-thermal afterglow. In particular, we
conducted a VLA observation at 4.5 year after GW170817 [27]. The radio flux was detected at the level of
3 udy. This flux level agrees with the expectation of the jet afterglow. Therefore, we put a constraint on
the late-time contribution of the kilonova afterglow.

Gamma-Ray Burst Theory (K. Takahashi, C. M. Irwin)

Gamma-ray bursts (GRBs) and their afterglows are important as a probe of death of massive stars and
compact binary mergers. We examined the possibility that the shock breakout theory can explain GRB
060218. In order to do it, we considered non-thermal equilibrium processes and light-travel time effects. We
found that a shock breakout model including these effects successfully explain the observed data. We also
studied particle acceleration in GRB afterglows. In particular, we showed that the future multi-wavelength
observation of neutron star mergers’ afterglows can reveal the dependence of the particle spectrum on the
shock velocity [B2].

Supermassive Black Holes and AGNs (D. Toyouchi)

We studied the chemical evolution of AGN environments [B0]. In this work, we focused on the evolution
of [Fe/Mg] with a semi-analytic modeling. As a result, we obtained a constraint on the birth rate of
massive stars in the AGN environments. We also performed radiation hydrodynamics simulations for first
star formation [31].

6.2 Activity report of Affiliates

6.2.1 Masaki Ando

Ando group is working on experimental research for gravitational-wave observation, in particular for
large projects such as KAGRA and B-DECIGO. KAGRA is a gravitational-wave antenna at Kamioka,
Gifu prefecture in Japan. We are playing a key role since the conceptual study phase before the start
of the project in 2010. The installation of the main components have been finished in FY2018, and we
are in the phase of commissioning; shakedown, and tuning for the full operation of the interferometer. In
FY2020, the KAGRA interferometer started the observation run, named O3GK. Our group members led
the commissioning works and operation of the interferometer. We are also working on B-DECIGO, which is
a space-borne gravitational wave antenna with an observation band of around 0.1 Hz. We made a theoretical
study on science cases by this mission as well as experimental development of critical subsystems, such as
laser interferometer, stabilized laser source, drag-free system, and low-noise thruster.

6.2.2 Mamoru Doi

In preparation to the fourth observing run (O4) of the gravitational wave (GW) detectors of the LIGO-
Virgo-KAGRA Collaboration (LVK) which begins in 2023, we updated the VOEvent based automated
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followup system of Tomo-e Gozen that we developed in O3 to adapt the system to the revised alert format
which will be used in O4. The pipeline software that searches transient objects from data obtained by
Tomo-e Gozen is also upgraded, and will enable us to search optical counterparts of GW events in a timely
fashion.

We search for optical counterparts of Fast Radio Bursts (FRBs) using the optical high-speed observing
facilities, Tomo-e Gozen on the Kiso Schmidt telescope and TriCCS on the Seimei telescope, in order
to understand the nature of the mysterious transient phenomena. The searches target both repeating
and non-repeating FRBs. In FY 2022, we published the results (optical upper limits) of the monitoring
observation of repeating FRB 20190520B in collaboration with the radio observing groups using the Five-
hundred-meter Aperture Spherical radio Telescope (FAST), and conducted further monitoring observations
of repeating FRBs. The simultaneous optical-radio survey for non-repeating FRBs using Tomo-e Gozen
and the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is also ongoing.

We have discoverd an ultraluminous fast-evolving transient at redshift of 1.063 using the Hyper Suprime-
Cam (HSC) on the 8.2 m Subaru telescope. We also found and studied 32 tiny (diameter less than 100 m)
near-Earth Objects (NEOs) with Tomo-e Gozen, and discovered that the distribution of tiny NEOs in a
diameter and rotational period diagram is truncated around a period of 10 s. We also discovered 22 flares
from M3- M5 dwarfs with a rise time of about five to one hundred seconds with Tomo-e Gozen, and studied
their properties.
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7 Project 3. Formation and characterization
of planetary systems

7.1 Activity Report

Project 3 “Formation and characterization of planetary systems” approaches the problem both theoreti-
cally and observationally through the collaboration with members in Departments of Physics, Astronomy,
and Earth and Planetary Sciences. We show several highlights of our research this year.

7.1.1 Architecture of planetary systems predicted from protoplanetary disks
observed with ALMA

Starting from the initial configurations of 12 multi-planetary systems deduced from ALMA disks, we
carried out two-stage N-body simulation to investigate the evolution of the planetary systems at the disk
stage as well as the long term orbital stability after the disk dispersal. At the disk stage, our simulation
includes both the orbital migration and pebble/gas accretion effects. We found a variety of planetary
systems are produced and can be categorised into distant giant planets, Jupiter-like planets, Neptune-like
planets and distant small planets. We found the disk stage evolution as well as the final configurations are
sensitive to both the initial mass assignments and viscosity. After the disk stage, we implement only mutual
gravity between star and planets and introduce stochastic perturbative forces. All systems are integrated
for up to 10Gyr to test their orbital stability. Most planetary systems are found to be stable for at least
10Gyr with perturbative force in a reasonable range. Our result implies that a strong perturbation source
such as stellar flybys is required to drive the planetary system unstable.

7.1.2 Analytic model for photometric variation due to starspots on a differen-
tially rotating star

We present an analytic model of the lightcurve variation for stars with non-evolving starspots on a
differentially rotating surface. We generate different realizations of multi-spots according to the model,
and perform mock observations of the resulting lightcurve modulations. We discuss to what extent one can
recover the properties of the spots and the parameters for the differential rotation law from the periodogram
analysis. Although our analytical model neglects the evolution of spots on the stellar surface (dynamical
motion, creation and annihilation), it provides a basic framework to interpret the photometric variation of
stars, in particular from the existing Kepler data and the future space-born mission.

7.1.3 Dynamical disruption timescales of hierarchical triple systems

We examine the stability of hierarchical triple systems using direct N-body simulations without adopt-
ing a secular perturbation assumption. We estimate their disruption timescales in addition to the mere
stable/unstable criterion, with particular attention to the mutual inclination between the inner and outer
orbits. We improve the fit to the dynamical stability criterion that has been widely adopted in the previous
literature. Especially, we find that that the stability boundary is very sensitive to the mutual inclination;
coplanar retrograde triples and orthogonal triples are much more stable and unstable, respectively, than
coplanar prograde triples. We obtain an improved empirical fit to the disruption timescales, which indicates
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that the coplanar retrograde triples are significantly more stable than the previous prediction. We further-
more find that the dependence on the mutual inclination can be explained by the energy transfer model
based on a parabolic encounter approximation. We also show that the disruption timescales of triples are
highly sensitive to the tiny change of the initial parameters, reflecting the genuine chaotic nature of the
dynamics of those systems.

7.1.4 Photometric variations due to a global inhomogeneity on an obliquely
rotating star

We perform intensity variability analyses (photometric analyses: the Lomb-Scargle periodogram, autocor-
relation, and wavelet) and asteroseismic analysis of 92 Kepler solar-like main-sequence stars to understand
the reliability of the measured stellar rotation periods. We focus on the 70 stars without reported stellar
companions, and classify them into four groups according to the quarter-to-quarter variance of the Lomb-
Scargle period and the precision of the asteroseismic period. We present detailed individual comparison
among photometric and asteroseismic constraints for these stars. We find that most of our targets exhibit
significant quarter-to-quarter variances in the photometric periods, suggesting that the photometrically
estimated period should be regarded as a simplified characterization of the true stellar rotation period, es-
pecially under the presence of the latitudinal differential rotation. On the other hand, there are a fraction
of stars with a relatively small quarter-to-quarter variance in the photometric periods, most of which have
consistent values for asteroseismically and photometrically estimated rotation periods. We also identify over
ten stars whose photometric and asteroseismic periods significantly disagree, which would be potentially
interesting targets for further individual investigations.

7.1.5 Lagrange stability of hierarchical triple systems

While there have been many studies examining the stability of hierarchical triple systems, the meaning
of “stability” is somewhat vague and has been interpreted differently in previous literatures. The present
paper focuses on “Lagrange stability”, which roughly refers to the stability against the escape of a body
from the system, or “disruption” of the triple system, in contrast to “Lyapunov-like stability” that is related
to the chaotic nature of the system dynamics. We compute the evolution of triple systems using direct
N-body simulations up to 107 P,y;, which is significantly longer than previous studies (with P,,; being the
initial orbital period of the outer body). We obtain the resulting disruption timescale Ty as a function of
the triple orbital parameters with particular attention to the dependence on the mutual inclination between
the inner and outer orbits, iy,,¢. By doing so, we have clarified explicitly the difference between Lagrange
and Lyapunov stabilities in astronomical triples. Furthermore, we find that the von Zeipel-Kozai-Lidov
oscillations destabilize significantly inclined triples (roughly with 60° < ipyu: < 150°) relative to those with
tmut = 0°. On the other hand, retrograde triples with ¢y,,4 > 160° become strongly stabilized with much
longer disruption timescales.

7.1.6 A super-Earth orbiting near the inner edge of the habitable zone around
the M4.5 dwarf Ross 508

We report the first near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit
around the M4.5 dwarf Ross 508. Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler)
instrument, we derive a semi-amplitude of 3.92 ms—1, corresponding to a planet with a minimum mass
msini of 4.00 Earth masses. The planet, Ross 508 b, has a semi-major axis of 0.05366 au. This gives an
orbit-averaged insolation of 1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s
habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is
accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that
the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like
Ross 508.
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7.1.7 Direct-imaging Discovery and Dynamical Mass of a Substellar
Companion Orbiting an Accelerating Hyades Sun-like Star with
SCExAO/CHARIS

We present the direct-imaging discovery of a substellar companion in orbit around a Sun-like star member
of the Hyades open cluster. So far, no other substellar companions have been unambiguously confirmed
via direct imaging around main-sequence stars in Hyades. The star HIP 21152 is an accelerating star as
identified by the astrometry from the Gaia and Hipparcos satellites. We detected the companion, HIP
21152 B, in multiple epochs using the high-contrast imaging from SCExAO/CHARIS and Keck/NIRC2.
The CHARIS spectroscopy reveals that HIP 21152 B’s spectrum is consistent with the L/T transition,
best fit by an early T dwarf. Our orbit modeling determines the semimajor axis and the dynamical
mass of HIP 21152 B to be 17.5 au and 27.8 Jupiter masess, respectively. Mass estimates inferred from
luminosity-evolution models are slightly higher. With a dynamical mass and a well-constrained age due
to the system’s Hyades membership, HIP 21152 B will become a critical benchmark in understanding the
formation, evolution, and atmosphere of a substellar object as a function of mass and age.

7.1.8 The JWST Early-release Science Program for Direct Observations of
Exoplanetary Systems

The direct characterization of exoplanetary systems with high-contrast imaging is among the highest
priorities for the broader exoplanet community. As large space missions will be necessary for detecting and
characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is
a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-
infrared wavelengths beyond 5 microns, deliver detailed spectroscopy revealing much more precise chemical
abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant
planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the
scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance
of JWST is needed as early in the mission as possible.

We describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to
extend the characterization of planetary-mass companions to 15 microns as well as image a circumstellar
disk in the mid-infrared with unprecedented sensitivity.

We also present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <20
Jupiter masses widely separated (a = 150 au), young, planetary-mass companion that shares photometric
colors and spectroscopic features with the directly imaged exoplanets HR 8799¢c, d, and e. As an L-to-T
transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar
atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST’s NIRSpec IFU and
MIRI MRS modes for coverage from 1 to 20 microns at resolutions of 1000-3700. Water, methane, carbon
monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum
based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models.
The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect
silicate clouds, the first such detection reported for a planetary-mass companion.

7.1.9 Photosynthetic Fluorescence from Earthlike Planets around Sunlike and
Cool Stars

Remote sensing of the Earth has demonstrated that photosynthesis is traceable as the vegetation red
edge (VRE), which is a steep rise in the reflection spectrum of vegetation, and as solar-induced fluores-
cence. This study examines the detectability of biological fluorescence from two types of photosynthetic
pigments, chlorophylls (Chls) and bacteriochlorophylls (BChls), on Earthlike planets with oxygen-rich/poor
and anoxic atmospheres around the Sun and M dwarfs. We find that the BChl-based fluorescence for wave-
lengths of 1000-1100 nm, assuming the spectrum of BChl b-bearing purple bacteria, could provide a suitable
biosignature, but only in the absence of water cloud coverage or other strong absorbers near 1000 nm. The
Chl fluorescence is weaker for several reasons. The apparent reflectance excess is greatly increased in both
the Chl and BChl cases around TRAPPIST-1, due to the fluorescence and stellar absorption lines. This



7.2. PUBLICATION LIST 44

could be a promising feature for detecting the fluorescence around ultracool red dwarfs using follow-up
ground-based observations at high spectral resolution.

7.1.10 An Earth-sized Planet around an M5 Dwarf Star at 22 pc

We report on the discovery of an Earth-sized transiting planet (R=1.015 Earthe radii) in a period of 4.02
day orbit around K2-415, an M5V star at 22 pc. The planet candidate was first identified by analyzing the
light-curve data obtained by the K2 mission, and it is here shown to exist in the most recent data from
TESS. Combining the light curves with the data secured by our follow-up observations, including high-
resolution imaging and near-infrared spectroscopy with IRD, we rule out false-positive scenario. Based
on IRD’s radial velocities of K2-415, which were sparsely taken over three years, we obtain a planet mass
of 3.0 Earth masses for K2-415b. Being one of the lowest-mass stars (0.16 solar masses) known to host
an Earth-sized transiting planet, K2-415 will be an interesting target for further follow-up observations,
including additional radial velocity monitoring and transit spectroscopy.

7.1.11 Investigation of asteroids Ryugu, Bennu, and Dimorphos with
Hayabusa2, OSIRIS-REx, and Hera missions

Samples from asteroid Ryugu brought back to the Earth by JAXA’s Hayabusa2 were analyzed extensively
throughout 2022. We continued our participation in curation and initial analysis activities of Ryugu
samples. These activities have revealed many important properties of Ryugu and its parent body. One
important finding is that Ryugu sample experienced extensive aqueous alteration in its parent body and
still retain much hydrated minerals [I3]. Second, Ryugu materials turned out to be very similar to CI
chondrites, one of the most primitive carbonaceous chondrites found on Earth [I4]. Because the elemental
abundance of CI chondrites is similar to the solar composition, CI has been considered as the standard
materials of our solar system. However, because all the CI chondrite samples collected on Earth have been
contaminated with Earth’s moisture and organics, light element abundances were not considered reliable.
Now we have contamination-free CI materials from Ryugu, our knowledge on the light elements in the solar
system would be much more accurate. We also observed both noble gas and adsorbed gas in the returned
samples, revealing that the surface exposure ages of Ryugu is several million years [[H] and that Ryugu
materials are rather reducing [[6]

Second, we participated in other international planetary missions, such as NASA’s OSIRIS-REx mission
and ESA’s Hera mission. The former is a sample return mission to a carbon-rich asteroid in a near-Earth
orbit with aiming at science goals with Hayabusa2. Because of our similar experiences, we participated
in science data analysis around OSIRIS-REx sampling campaign on asteroid Bennu [7]. We observed a
massive ejecta curtain emerged from the physical disturbance created by sampling activities on Bennu,
indicated that its surface materials are extremely mobile with internal cohesion jj 1 Pa. This further shows
that crater chronology curve for Bennu should be very similar to Ryugu. The latter mission is to conduct
detailed observations of artificial impact crater created on Dimorphos a satellite of asteroid Didymos. We
conducted detailed science and project design with many lessons learned from Hayabusa2 [I¥].
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