Research Center for the Early Universe

Graduate School of Science
University of Tokyo

Annual Report
2021

4p
SH
p -
w
il
Kt
H

FRARE® S

RREKRFZAZEREBFRIAREMNE
EvINCFHERHAEL X —



Version SF14 8 A 24 H
Copyright (©Research Center for the Early Universe 2022



Preface

I am pleased to deliver the annual report of Research Center for the Early Universe (RESCEU) for the
fiscal year of 2021 (from April 2021 to March 2022).

RESCEU was founded in 1999 as an institute belonging to Faculty of Science, the University of Tokyo,
led by the first director, Prof. Katsuhiko Sato of Physics Department. In 2015 we reorganized the research
projects in RESCEU, and now we have three major projects including (1) Evolution of the universe and
cosmic structures (led by Prof. Jun’ichi Yokoyama), (2) Gravitational-wave astrophysics and experimental
gravity (led by Prof. Kipp Cannon), and (3) Formation and characterization of planetary systems (led by
myself). Those projects have been supported by a variety of collaboration among our research affiliates in
Departments of Physics, Astronomy, and Earth and Planetary Sciences of Faculty of Science, the University
of Tokyo.

Due to the pandemic of COVID-19, the activity in RESCEU has been seriously affected for the last
couple of years. However, we have been struggling to advance our projects; weekly seminars and regular
discussions have been carried out via zoom, and we organized a summer school online with inviting foreign
researchers.

We are pleased to announce the following awards for our RESCEU members this year. Prof. Atsushi
Nishizawa received the Young Scientists’” Award in the Commendation for Science and Technology by
the Minister of Education, Culture, Sports, Science and Technology in March 2021. Jun’ya Kume, a
graduate student of the Yokoyama group, received Student Presentation Award of the Physical Society of
Japan in both October 2021 and March 2021 and he was also awarded JGRG Workshop 2021 Outstanding
Presentation Award Gold Prize in December 2021.

In 2021, we have three new post-docs who joined RESCEU including Dr. Daisuke Toyouchi, Dr. Christo-
pher Irwin (hosted by Prof. Hotokezaka), and Dr. Kohei Fujikura (hosted by Prof. Yokoyama). A JSPS
Research Fellow, Dr. Heather Fong, became a Research Fellow at RESCEU in June 2021 (hosted by
Prof. Cannon). A post-doc, Dr. Tatsuya Matsumoto, moved to Department of Physics and Columbia Astro-
physics Laboratory, Columbia University in August 2021 as a JSPS Overseas Research Fellow. A post-doc,
Dr. Yusuke Yamada, moved to Waseda Institute for Advanced Study, Waseda University in March 2022 as
an Assistant Professor. Dr. Kohei Fujikura, moved to Department of Physics, Kobe University in March
2022 as a JSPS Research Fellow. A project assistant professor, Kotaro Fujisawa, moved to Department of
Physics, the University of Tokyo in March 2022, as an assistant professor. Assistant Prof. Masamune Oguri
was promoted to a full professor in Center for Frontier Science, Chiba University in February 2022, and
Assistant Prof. Kazumi Kashiyama was promoted to an associate professor in Department of Astronomy,
Tohoku University in March 2022.

Finally, Sayuri Nagano left RESCEU at the end of this fiscal year. She had been a secretary of RESCEU
for last 25 years, and made significant contribution to all aspects in RESCEU, in particular, taking care of
graduate students over generations literally. I would like to express the great respect and gratitude to her
on behalf of all members of RESCEU since 1997 when she joined RESCEU.

May 2022

Director Yasushi Suto
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1 Members

’RESCEU members ‘
Yasushi Suto [ZHEEH]
Jun’ichi Yokoyama [ LiJIE—]
Kipp Cannon
Toshikazu Shigeyama [/5ILI{£&F)]
Kenta Hotokezaka [{ARfE# K]
Masamune Oguri [KEEER]
Kazumi Kashiyama [#LF1C]
Kohei Kamada [ H#F]
Atsushi Nishizawa [PA{EE&]
Kotaro Fujisawa =% A EK]
Yuji Chinone [ZAR#H]|
Daisuke Toyouchi [N KHH]
Koh Ueno [ F¥7 5]
Heather Fong

Tatsuya Matsumoto [FAARZEXK]
Yusuke Yamada [ILI &/
Kohei Fujikura [#E& 75 F]
Sayuri Nagano [KFFHRHE]
Chiyo Ueda [ -HTF1YX]

Reiko Sugiyama [#21L1#LF]
Nao Watanabe [{i43FE)

Director

Professor

Professor

Professor

Associate Professor

Assistant Professor (- 2022/1/31)

Assistant Professor (- 2022/3/15)

Assistant Professor

Assistant Professor

Project Assistant Professor (RESCEU)

Project Assistant Professor (RESCEU & JSPS Grant of Prof. Kusaka)

Postdoctoral Fellow (RESCEU)

Postdoctoral Fellow (JSPS Grant of Prof. Yokoyama)

Postdoctoral Fellow (JSPS Fellow (- 2021/6/15),
Kakenhi Grant of Prof. Cannon (2021/6/16-))

Postdoctoral Fellow (JSPS Fellow) (— 2021/08/31)

Postdoctoral Fellow (JSPS Fellow)

Postdoctoral Fellow (JSPS Fellow)

Secretary

Secretary

Secretary (-2021/6/30)

Secretary (2021/6/1 —)
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RESCEU affiliates |

Naoki Yoshida [ FHEAC]
Tomonori Totani [F A& Hll]
Kotaro Kohno [{A[EFZ£KHN]
Mamoru Doi [1:)J&5F]
Motohide Tamura [FHATTF]
Seiji Sugita [#ZHFEH]]

Eiichi Tajika [FHI%—]
Satoshi Yamamoto [[LIA<8]
Hideo Higuchi [$EI155 %)
Chikara Furusawa [ /7]
Aya Bamba [[535¥]

Akito Kusaka [H NBEA]
Kazuhiro Shimasaku [I§{E—K]
Masaki Ando [Z 8 [F 48]
Hajime Kawahara [{A]JiE]l]

Professor, Dept. of Physics

Professor, Dept. of Astronomy

Professor, Institute of Astronomy

Professor, Institute of Astronomy

Professor, Dept. of Astronomy

Professor, Dept. of Earth and Planetary Science

Professor, Dept. of Earth and Planetary Science

Professor, Dept. of Physics

Professor, Dept. of Physics

Professor, Universal Bioligy Institute

Associate Professor, Dept.
Associate Professor, Dept.
Associate Professor, Dept.
Associate Professor, Dept.

Assistant Professor, Dept.

of Physics
of Physics
of Astronomy
of Physics

of Earth and Planetary Science



2 Projects

Project 1. Evolution of the Universe and cosmic structures

’ Name

‘ Research thema

Jun’ichi Yokoyama

Physics of the Early Universe

Toshikazu Shigeyama

Coevolution of galaxies and stars

Naoki Yoshida

Evolution of compact objects and time domain astronomy

Tomonori Totani

Evolution of the Universe probed by gamma-ray bursts and fast radio

bursts

Kotaro Kohno

Dust-enshrouded growth of galaxies and supermassive blackholes

Aya Bamba

Chemical evolution of the Universe with supernova remnant study

Kazuhiro Shimasaku

Galaxy formation and evolution

Akito Kusaka

Observational cosmology using cosmic microwave background

Masamune Oguri

Unveiling the nature of dark matter and dark energy

Kazumi Kashiyama

Evolution of compact objects and time domain astronomy

Kohei Kamada

Particle cosmology

Project 2. Gravitational-wave astrophysics and experimental gravity

Name

|

Research thema

Kipp Cannon

Detection and interpretation of gravitational waves emitted by the collisions

of compact objects

Kenta Hotokezaka

Multi-messanger astrophysics of compact binary mergers

Mamoru Doi

Identifications of gravitational-wave sources by wide-field and multi-color op-

tical observations

Masaki Ando

Gravitational-wave experiment and astrophysics

Atsushi Nishizawa

Gravitational-wave physics and cosmology

Project 3. Formation and characterization of planetary systems

Name

Research thema

Yasushi Suto

Dynamical evolution of orbit and angular momentum of exoplanetary systems

Motohide Tamura

Exoplanet observations and instrumentations

Seiji Sugita

An asteroid sample-return mission and feasibility study for an exoplanet ob-

servation satellite

Satoshi Yamamoto

Physics and chemistry of protoplanetary disk formation

Eiichi Tajika

Diversity and evolution of habitable planets

Hajime Kawahara

Exploring instrumentation and methods for characterizing exoplanets

Hideo Higuchi

Universal model on motor proteins

Chikara Furusawa

Evolutionary dynamics of computational cell models




3 Symposia and Meetings

RESCEU Summer School 2021

Place: Online

Time: 2021/8/18 (Wed) — 2021/8/20 (Fri)

Program

8/18 (Wed) morning, chair:Kashiyama

9:50-10:00

10:00-11:30
11:30-11:40
11:40-12:00

12:00-12:20

Yasushi Suto
(L) Smadar Naoz
break

Yurina Nakazato

Toshinori Hayashi

Opening remark

Gravitational Wave Sources at the Hearts of Galaxies

The formation of Supersonically Induced Gas Objects(SIGOs) with
H2 chemistry
The dependency of disruption times of hierarchical three-body sys-

tems on the orbital parameters

8/18 (Wed) afternoon, chair:Fujisawa

14:00-14:20
14:20-14:40
14:40-15:00

15:00-15:10
15:10-15:30
15:30-15:50
15:50-16:10

Hiroto Mitani
Koki Tokeshi
Yici ZHONG

break

Fumio Uchida
Soichiro Hashiba
Yuki Takei

H2 Pumping effect on atmospheric escape of hot Jupiters
On systematic uncertainties of primordial black hole abundance
A necessary condition for supernova fallback invading newborn

neutron-star magnetosphere

Dynamics of the magnetized plasma in the early universe
Schwinger reheating during kination
CHIPS: an open source code for supernovae interacting with a mas-

sive circumstellar medium

8/19 (Thu) morning, chair:Oguri
(L) Masahiro Takada Hyper Suprime-Cam Search of Primordial Black Holes and other

10:00-11:30

11:30-11:40
11:40-12:00
12:00-12:20

break
Yuta Tarumi
Kohei Fujikura

topics

r-process enrichment of a globular cluster and its implications
Generation of FIMP dark matter and baryon asymmetry in

quintessential inflation with right-handed neutrinos



3 Symposia and Meetings

8/19 (Thu) afternoon, chair:Toyouchi

13:50-14:10
14:10-14:30

14:30-14:50

14:50-15:00
15:00-16:30

Jun’ya Kume

Takuya Tsutsui

Minori Shikauchi

break

(L) Kenta Kiuchi

Chiral plasma and birefringent gravitational waves

Early warning of precessing NSBH mergers with the near-future
gravitational wave detectors

The Binary Evolution Parameter Dependence of the Detectablity of
BH-LC binaries with Gaia

Recent progress of numerical relativity simulations of compact ob-

jects and its application to gravitational wave astrophysics

8/20 (Fri) morning, chair:Kamada

9:00-10:30

10:30-10:40
10:40-11:00
11:00-11:20
11:20-11:40

(L) Enrico Pajer

break
Minxi He

Jason Kristiano

Hiroki Kawai

A timeless history of time

Perturbative Reheating after Mixed Higgs-R? Inflation
Theoretical bound of primordial non-Gaussianity
An analytic model for the sub-galactic matter power spectrum in

fuzzy dark matter halo

8/20 (Fri) afternoon, chair:Nishizawa

13:00-14:30
14:30-14:40
14:40-15:00

15:00-15:20

15:20-15:40
15:40-15:50

(L: Lecture)

(L) Kunihiko Kaneko

break

Tilman Hartwig

Ayano Komaki

Soichiro Kuwahara

Jun’ichi Yokoyama

w4V (Universal biology)

A new, unsupervised, non-parametric likelihood test for multi-
dimensional data

Photoevaporation of Protoplanetary Disk: Dust-to-gas Mass
Ratio Dependence

Cherenkov radiation like GW search

closing
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4 RESCEU colloquia

e RESCEU Colloquium No. 49
Kiwamu Izumi (JAXA Institute of Space and Astronautical Science International Top Young Fellow)
“Experimental activities for space gravitational wave observations”
April 08, 2021, 13:00-14:00

e RESCEU Colloquium No. 50
Akira Okumura (ISEE, KMI, Nagoya University)
“CTA Small-Sized Telescopes for PeVatron Search”
April 22, 2021, 10:30-11:30

¢ RESCEU Colloquium No. 51
Bunyo Hatsukade (Institute of Astronomy, The University of Tokyo)
“Radio constraints on the nature of superluminous supernovae and their host galaxies”
May 20, 2021, 15:00-16:00

¢ RESCEU Colloquium No. 52
Kazuyuki Sugimura (Astronomical Institute, Tohoku University)
“Formation of the First-star Binaries”
October 11, 2021, 10:30-11:30

¢ RESCEU Colloquium No. 53
Masaomi Tanaka (Astronomical Institute, Tohoku University)
“Kilonova: Electromagnetic signature of heavy-element nucleosynthesis”
December 06, 2021, 10:30-11:30

e RESCEU Colloquium No. 54
Shingo Kazama (Nagoya University)
“Direct Dark Matter Search with XENON”
December 07, 2021, 15:00-16:00

¢ RESCEU Colloquium No. 55
Atsush Takada (Kyoto University)
“Dawn of MeV gamma-ray astronomy with electron-tracking Compton camera”
February 10, 2022, 13:30-14:30



4 RESCEU colloquia
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5 Project 1. Evolution of the Universe and
cosmic structures

5.1 Activity Report

5.1.1 One-loop correction to curvature perturbation in single-field inflation

We calculated one-loop quantum corrections to the power spectrum of the curvature fluctuations produced
by single-field inflation from the three-point interaction. We computed the one-loop quantum correction
from the three-point interaction and found that this correction is large but finite due to the fact that the
spectrum should be red tilted as indicated by observation. Furthermore, we found that an upper bound
on the non-Gaussianity is given by requiring the one-loop quantum correction to be smaller than the
observed curvature fluctuations. This requirement leads to a condition for the consistency of the single-
field inflationary model, which is an important condition for the construction of the model of inflation
(Yokoyama).

5.1.2 Baryogenesis

In a class of the models of baryogenesis, only B+ L asymmetry is generated but no net B-L asymmetry is.
Such mechanisms are thought not to work since the asymmetry is washed out by the electroweak sphaleron
before the electroweak symmetry breaking. We take advantage of the fact that at high temperature when
some of the Yukawa interactions do not in equilibrium some fermion numbers are good conserved quantity
and the washout by the electroweak sphaleron does not complete, and propose a new framework of baryoge-
nesis dubbed “wash-in leptogenesis”. In this framework we introduce right-handed neutrinos that are once
in equilibrium and decouple due to their Majorana mass at the temperature higher than the completion of
the washout by the electroweak sphalerons. We find that at the time of the decouple of the right-handed
neutrinos, B-L asymmetry, which survives until today, is induced with the CP-violation originated by the
B+L asymmetry of the system. This framework is useful to rescue the SU(5) GUT baryogenesis or the
baryogenesis from axion inflation. (Kamada)

5.1.3 Quantum anomaly in the early Universe

We study the gravitational counterpart of the Chiral Magnetic Effect, dubbed “Chiral Gravitational
Effect (CGE)”, where the energy momentum tensor is induced in parallel to the gravitational waves in
the presence of the chiral asymmetry. We evaluate its effect in the dynamical chiral asymmetry with the
application to cosmology in mind. We find that the birefringence is induced in the gravitational waves in
response to the dynamical chiral asymmetry through the CGE. It suggests a possibility that the helicity of
the stochastic gravitational background may carry the information of the non-trivial particle dynamics in
the early Universe. (Kamada)

5.1.4 Fast Calculation of Gravitational Lensing Properties of Elliptical
Navarro-Frenk-White and Hernquist Density Profiles

We proposed a new approach for fast calculation of gravitational lensing properties, including the lens po-
tential, deflection angles, convergence, and shear, of elliptical Navarro-Frenk-White (NFW) and Hernquist
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density profiles. In this approach, they are approximated by superpositions of elliptical density profiles
for which simple analytic expressions of gravitational lensing properties are available. It turned out this
model achieves high fractional accuracy better than 10~ in the wide range of the radius normalized by
the scale radius of 10~* — 103. Remarkably, this new approximation is ~ 300 times faster in solving the
lens equation for a point source compared with the traditional approach resorting to expensive numerical
integrations. Our work opened up a new avenue for analyzing gravitational lensing with realistic lens mass
models. (Oguri)

5.1.5 High redshift galaxies

We use Subaru/Hyper Suprime-Cam (HSC) IB945 imaging data and detect 44 Lyman alpha emitters
(LAEs) at z ~ 6.8, finding an overdense region with a projected density excess of § ~ 14. This large 0
value suggests a highly neutral universe, while the Ly« luminosity function from the 44 sources is consistent
with full ionization. We are investigating the origin of this discrepancy. We conduct a systematic survey
of proto-clusters at z ~ 1.5 using wide imaging data from the HSC SSP. We find that the fraction of
red (quiescent) galaxies increases with stellar mass, consistent with stellar-mass dependent environmental
quenching recently found at z > 1. In addition, although the cores with red and blue central galaxies have
similar dark halo masses, only those with red centrals show a significant red fraction excess compared to
the field, suggesting a conformity effect. We develop a machine-learning (deep anomaly detection) based
method that selects rare galaxy populations from a large data set of HSC multiband images. We find
that this method can select ~ 60% of known quasars and extreme emission-line galaxies at z = 0.05 — 0.2.
(Shimasaku)

5.1.6 Astrophysical transients: their origins and consequences
The following topics were studied in this project.

e Binary neutron star mergers in faint dwarf spheroidal galaxies (Shigeyama)

e Optical emission immediately after binary neutron star mergers (Shigeyama)
e Observations of the early light from type Ia supernovae (Shigeyama; Doi, M.)
e Influence of Pop III supernova explosions on the companion stars (Shigeyama)

e Rapidly rotating massive white dwarfs as a result of binary white dwarf mergers (Kashiyama, Fuji-
sawa, Ko, Tsuna, Shigeyama)

e Emission of type IIn supernovae (Shigeyama, Tsuna, Kashiyama, Takei)

e Eruptive mass loss from a massive star a few years before the core collapse (Shigeyama, Takei, Tsuna,
Ko)

e Accretion of C+0O matter onto a neutron star igniting Carbon burning (Shigeyama, Nagarajan)

e Influence of supernova fallback on newborn neutron star magnetospheres (Shigeyama, Kashiyama,
Zhong)

e Rotational equilibria on the 2D Lagrange coordinates (Fujisawa)

e The W4 method: a new multi-dimensional root-finding scheme for nonlinear systems of equations
(Fujisawa)

e Black hole formation from rotating massive stars (Shigeyama, Kashiyama, Tsuna)
e Multi-wavelength emission from Galactic black holes (Kashiyama)
e Gravitational wave background from binary black hole mergers (Kashiyama)

e Emission of type IIn supernovae (Shigeyama, Tsuna, Kashiyama, Takei)
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Influence of supernova fallback on newborn neutron star magnetospheres (Shigeyama, Kashiyama,
Zhong)

Multi-wavelength emission from embryonic pulsar wind nebula (Kashiyama)
e Mechanism of the Galactic fast radio burst (Kashiyama)

e Proposing the 56Ni problem for ultra-stripped supernovae (Kashiyama)

Here the names of researchers are listed in the parentheses.

5.1.7 Probing the origin of compact objects in the universe by theoretical
modeling and multi-wavelength observations

Sensitivity of very-high-energy (VHE) gamma-rays would be greatly improved in the near future by the
operation of Cherenkov Telescope Array (CTA). We examined the feasibility of VHE detection of binary
neutron star (BNS) mergers by using a latest theoretical model of afterglows from BNS mergers, that
is consistent with available observations. The number of nearby star-forming galaxies detected in VHE
will also be increased by CTA. We examined the nearby galaxy database and predicted VHE gamma-
ray luminosities using physical quantities of these galaxies, and then listed up the promising targets for
CTA. Comparison between observed VHE flux and our model prediction would give new insight to cosmic
acceleration and their interaction in various types of galaxies. (Totani)

5.1.8 X- and y-ray study of high-energy astrophysics

Our aim is understanding high energy phenomena in the universe, such as supernova explosions and
their remnants, compact stars such as neutron stars and blackholes, and active galactic nucleus. Such high
energy objects emit X-rays and gamma-rays, thus we observe such high energy photons using balloons and
satellites.

This year we studied the shock structure and heating mechanism in supernova remnant (SNR) systems.
We have made detailed spatially resolved spectroscopy of young SNRs, Tycho (SN1572) and resolved three-
dimentional expansion structure using Doppler broadening of emission lines. We found that the shock is
decelerated by the circumsteller medium. This is the first direct discovery of circumsteller material around
Tycho, implying the origin of Tycho is not a double-degenerate but a single-degenerate. We have also done
similar analysis of Kepler (SN1604) and found asymmetric circumsteller medium [i74].

Torus of active galactic nucleus (AGNs) feed supermassive blackholes and important to understand the
co-evolution of galaxy and the blackholes. This year we have made systematic analysis of AGNs hidden by
their torus with the X-ray emission model we developed (”XClumpy” ), and found that around half of AGNs
are hidden type. It is found that the covering fluction by their torus is larger than previously expected.
Our result implies that there are more undiscovered AGNs hidden by their torus.

We also study on the detector development for the near future missions. For the XRISM, to be launched
on the Japanese fiscal year 2022, we fixed the performance verification targets. We also developed the
Monte-Carlo based data analysis method for pile-uped data of the X-ray CCD onboard XRISM. For Cipher
mission, the first imaging polarimetory cubesat in the hard X-ray band, we completed the readout system
and also developed the coded mask pattern with lower noise level. We also started GRAMS mission
deverlopment in this year (Bamba).

5.1.9 Observational cosmology using cosmic microwave background

We conduct cosmology research by observing Cosmic Microwave Background (CMB) through observa-
tional projects: POLARBEAR, Simons Array, and Simons Observatory.

The POLARBEAR experiment and its successor, Simons Array, are designed to measure both inflationary
signature and the gravitational lensing effect in CMB polarization. POLARBEAR has concluded its obser-
vation campaign in 2016, and our focus has been on data analysis. Our recent result from this project is
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the improvement of our previous constraint on the tensor-to-scalar ratio r. We started a new time-domain
data analysis of the POLARBEAR datasets for searching the Axion-like particle (ALP).

For Simons Array experiment, observation using the first telescope and the deployment of the second
telescope were paused due to COVID-19 pandemic. We managed to gain access to the site toward the
end of 2020, and resumed observation at the beginning of 2021 using the first telescope. We have been
analyzing calibration observations to characterize the first telescope and analyzing CMB observations with
the analysis pipeline we have been developing in parallel. The deployment of the second telescope is
underway toward the first light in 2022.

The Simons Observatory experiment is scheduled for the first light in 2023. We will deploy three 0.4-m
Small Aperture Telescopes (SATs), which are dedicated for exploring inflationary signature, and a 6-m
Large Aperture Telescope (LAT), which will measure (or constrain) the sum of neutrino masses, and the
dark content of the universe. We have primarily focused on the development of SATs, and developed
the cryogenic optics tube, the cryogenic continuously rotating half-wave plate (HWP) system, and the
wiregrid calibrator. We also made significant progress in fabricating and commissioning the second and
third cryogenic continuously rotating half-wave plate rotation mechanism.

We also focus on developing techniques for high-performance computation (HPC) enabling data analysis
for Simons Observatory as well as Simons Array, producing order-of-magnitude larger data volume than
the previous instruments. While improving computational throughput, we need to improve on the analysis
systematics as well. One of our emphasis has been to reduce systematic leakage from the E-modes to
B-modes, developing technique to achieve this in a computationally feasible manner. In doing so, we
have developed a new pipeline module by taking advantage of GPUs and have validated it with simulated
datasets. (Kusaka, Kiuchi, Chinone)

5.1.10 Statistical Computational Cosmology

We applied a deep-learning method called SSD to detect transient objects in data collected by Tomo-e
Gozen. The method works in time domain with 2 Hz frequency and identify ordinary astronomical objects
such as stars but also time varying ones such as extremely short transients. It is applied to the ongoing
wide-field Tomo-e survey. We also developed a real/bogus classifier for Tomo-e by adopting a two-stage
training with treating mislabels. The method achieves an area under the curve of 0.9998 and a false positive
rate of 0.0002 at a true positive rate of 0.9. (Yoshida)
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6 Project 2. Gravitational-wave
astrophysics and experimental gravity

6.1 Activity Report

6.1.1 Kipp Cannon group

Our research group studies black holes, neutron stars, exotic astrophysical objects, and the Universe
using gravitational waves, and electromagnetic observations. Gravitational waves are waves of spacetime
curvature generated by the movement of mass and momentum. There are many reasons why gravitational
waves are an interesting way to explore the sky. Because gravitational waves are generated by physical
processes different from those that produce light or radio waves (which are generated by the movement of
electric charges and currents), gravitational waves carry different information about their sources than is
carried by electromagnetic waves. Gravitational waves interact weakly with matter allowing them to pass
through material that would be opaque to radio waves and light. For example we expect that gravitational
waves can escape the dense deep cores of supernovee, and show us the earliest moments of the Big Bang.
The Earth, too, is transparent to gravitational waves, so gravitational-wave telescopes can see the sky below
them through the Earth as easily as they can see the sky above, allowing gravitational-wave telescopes to
monitor the whole sky continuously, day and night. Gravitational waves are the only significant form of
energy expected to be radiated by some of the most exotic events in the universe like the collisions of black
holes. However, because everything is nearly transparent to gravitational waves, it is very difficult to build
a device that can detect them, and the first detection of this form of energy was only achieved in 2015. It
is even more difficult to build a device that can generate gravitational waves of any measurable amplitude,
and so astronomy, that is the observation of intense naturally occurring sources of these waves like the
collisions of black holes, provides our only opportunity to explore this aspect of the natural world.

Our research group’s members are members of the LSC and KAGRA Collaboration, and we analyze data

collected by the two LIGO gravitational-wave antennas in the United States, the Virgo antenna in Italy,
the GEO600 antenna in Germany, and the KAGRA antenna in Japan.

The Advanced LIGO and Advanced Virgo antennas were not collecting data during the 2021/2022
academic year, and had not been doing so since March of 2020 at the start of the pandemic. Nevertheless,
analysis of previously recorded data continued during this time, as well as research and development of new
techniques for analyzing and extracting information from the data, which we hope to use in the future when
observations restart. Members of our group are active in all aspects of observational gravitational-wave
astronomy, the following are some highlights from FY2021.

Searches for Compact Object Collisions

When heavy stars exhaust their fuel supply they undergo gravitational collapse. The end state of this
process can be a neutron star or a black hole. There are many of these in the Universe, and occasionally
they collide with one another. These collisions are very powerful sources of gravitational radiation. Since
the first detection of gravitational waves from the collision of a pair of black holes in September, 2015, we
have been able to study the behaviour of strongly curve spacetime.

This past academic year saw many new discoveries of black hole and neutron star collisions. Two of
these are especially noteworthy. The gravitational wave signal GW190814 (doi:10.3847/2041-8213/ab960f)
was the collision of a 23 solar-mass black hole and an object with the unusual mass of about 2.6 solar
masses. It’s not clear if the lighter object is a neutron star or black hole, and both options are unusual.
If a neutron star, it would be the heaviest neutron star known and above the maximum mass allowed by
a number of neutron star equation of state models; if a black hole, it might be the smallest known black
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hole. The signal was discovered by the GstLAL detection system developed by members of RESCEU. A
second remarkable discovery was GW190521, a collision of two black holes with a total mass of 150 solar
masses. Both of the black holes involved in the collision, and certainly the heavier of the two, have masses
above the so-called pair production bound. This refers to a process triggering the collapse of a star when
its core reaches a certain mass, and because of this process it’s believed that black holes above that mass
cannot form during supernovae. These black holes were larger than that limit. They might be the result
of earlier collisions of smaller black holes, but in any case their life stories are more complicated than the
other black holes we’ve observed.

Other on-going projects within our group include the development of techniques for removing signals
from detector data for the purpose of constructing clean noise models, the development of an ultra high-
speed sky mapping system suitable for use in early-warning detection systems, and the development of a
system to estimate the sensitivity of a search for gravitational waves mathematically, replacing the current
computationally costly technique of hiding fake signals in the data and searching for them with the detection
software. Group members have contributed to the search for gravitational-wave echoes from gravitational
lenses — waves from compact object collisions that arrive at Earth from multiple directions at different
times from having followed more than one path through spacetime. Studies of compact object collisions
are in some ways limited by the available computer resources, so the more efficiently we can use them the
more knowledge we can obtain, and improving analysis efficiency is a theme in our group. One on-going
project in this regard is the development of techniques to reduce the enormous data volume of the detection
systems to allow intermediate retained and reused for multiple analyses.

Development of the data analysis software GstLAL (Fong)

I am involved in developing the data analysis software GstLAL that is used to detect gravitational waves,
emitted by colliding black holes and neutron stars, that are passing through Earth. The software identifies
possible gravitational-wave events, and to each event, we quantify the probability that the event is a false
signal (i.e. not a gravitational wave) by assigning it a likelihood-ratio ranking statistic. My work involves
improving the accuracy of the ranking statistic by implementing the option to perform source-specific
searches, which in turn improves the sensitivity of the data analysis software to the population of interest.
I have also been using this method to design an optimal population model to search for strong gravitationally
lensed signals in existing LIGO and Virgo data. I am also involved in preparing the data analysis software
such that it can be used to analyze data from the KAGRA detector, whose next observation run is scheduled
to begin next spring.

Estimating performances of early warning with near-future gravitational wave detectors (Tsutsui)

Since gravitational and electromagnetic waves from a compact binary coalescence carry independent
information about the source, the joint observation is important for understanding the physical mechanisms
of the emissions. Rapid detection and source localization of a gravitational wave signal are crucial for the
joint observation to be successful. For loud signals, it is even possible to detect it before the merger, which
is called early warning. We estimated the performances of the early warning for neutron-star black-hole
binaries, considering the precession effect of a binary orbit, with the near-future detectors such as A+,
Advanced Virgo+, KAGRA+, and Voyager. We find that the precession effect improves about twice the
performance [Z1]. With the third-generation detectors such as Einstein Telescope and Cosmic Explorer, we
find that a neutron star-black hole binary at z=0.1 can typically be localized to 100 deg? and 10 deg? at the
time of 12-15 minutes and 50-300 seconds before merger, respectively, which cannot be achieved without
the precession effect [20].

Overlapping of gravitational-wave signals in the future gravitational-wave detectors (Nishizawa)

Future terrestrial gravitational wave detectors such as Finstein Telescope and Cosmic Explorer are ex-
pected to observe a large number of gravitational wave events (hundreds of thousands of events per year)
from binary coalescences of neutron stars and black holes. If the number of events is too large, the gravita-
tional wave signals in the detector data may overlap each other, which may affect the parameter estimation
of an individual gravitational wave signal. In the worst case, these signals cannot be separated and make
their detections difficult. To study this issue, we first performed a simulation to randomly generate grav-
itational wave events and estimated how much gravitational wave signals would overlap. Then, it was
investigated how much the error of parameter estimation and the estimation bias are degraded when the
gravitational wave signals overlap. As a result, it was found that the parameter estimation was hardly
affected unless the waveforms of the overlapping gravitational wave signals were very similar. Therefore,
our conclusion is that the overlaps of gravitational wave signals can occur frequently but do not cause a
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problem for parameter estimation in the future gravitational wave detector [IC7].

Astrophysical binary population

Short gamma-ray burst search with the CHIME radio telescope (Shikauchi)

Short gamma-ray bursts (SGRBs) are energetic and explosive outbursts lasting less than two seconds.
sGRBs are thought to originate from compact object mergers such as binary neutron stars and black
hole-neutron star binaries. Since the coalescence of compact object binaries can also be a source of gravi-
tational waves, the detection of gravitational wave signals associated with sGRBs would impose important
constraints on the origin of sSGRBs. However, only one gravitational wave signal associated with a sGRB
has been observed so far. In this study, in order to increase the samples of sSGRBs that are the target
of gravitational wave surveys, we will attempt to detect sGRBs where only a faint light can be observed.
In FY2021, we estimated how many afterglows from sGRBs could be observed with the radio telescope
Canadian Hydrogen Intensity Mapping Experiment (CHIME) and concluded that it is effective to search
for sGRBs with CHIME, although the number was slightly lower than in the previous study and that most
of the detectable afterglows are likely to be “orphan afterglows”, afterglows without observable prompt
emissions [IX]. In the next fiscal year, we will actually analyze CHIME data and conduct afterglow surveys.

Theoretical Researches on the detectable black hole-luminous companion binaries with astrometric satellite

Gaia (Shikauchi)

The astrometric satellite Gaia is expected to be able to observe non-interacting black hole-luminous
companion (BH-LC) binaries and estimate BH mass by observing a motion of the LCs. Since the orbital
period of the detectable BH-LC binaries should be longer than that of BH X-ray binaries in the Milky Way
and extragalactic binary BHs, Gaia may reveal a different BH population from X-ray and gravitational
wave observations. The next data release was held in June 2022 and included information of binaries,
which has attracted a great deal of attention. Up to now, there are about ten papers studies theoretically
predicting the number of BH-LC binaries observed with Gaia. In FY2021, we systematically investigated
the dependence of the detectability of BH-LC binaries on binary evolution models such as the supernova
model and the common envelope evolution model, and showed that observations can constrain binary
evolution parameters [19].

Neutron Star Interiors

Because we don’t have a detailed understanding of the behaviour of matter in the extreme pressure and
density conditions found in the interior of a neutron star, not much is known about the interior structure
of these objects. The gravitational waves emitted during the collisions of neutron stars with one another
are expected carry information about their interior structure. Since the structure is determined by the
laws of nuclear physics, learning about the structure can teach us about the properties of matter in regimes
inaccessible to experiments here on Earth. Models of neutron stars can be used to connect theories of the
properties of nuclear matter to features found in the gravitational waves emitted during their collisions. In
collaboration with Prof. Hotokezaka’s neutron star modelling group, and the nuclear physics group at the
University of Tokyo, members of our group are making this connection from theory to observation, and
investigating the ability of gravitational-wave detectors to validate or falsify modern theories of nuclear
physics. Specifically we are studying what properties of future observatories would be most beneficial in
answering these kinds of questions.

Ezamination of the testability of the hadron-quark phase transition using gravitational waves (Harada)

The hadron-quark phase transitions can occur in the core of neutron stars, but whether this phase
transition is a continuous crossover or the first order phase transition is one of the questions in nuclear
physics. These different two scenarios give the different waveform of gravitational waves emitted from
binary neutron star mergers, and it has been found that the difference mainly appears in the merger or
the post-merger phase rather than in the inspiral phase. On the other hand, the main frequency band of
gravitational waves after the coalescence of binary neutron stars is 2-4 kHz, which is higher than the most
sensitive frequency band of the current detectors, for example LIGO. In fact, due to the detector sensitivity
issues in the high frequency range, we have not seen the post-merger signal of GW170817, although this
event has a higher signal-to-noise ratio than any gravitational wave events observed before it. Therefore,
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in order to answer the question how the quark-hadron phase transition takes place, using gravitational
wave observation, a detector which has better sensitivity in the high frequency range and an appropriate
analysis method are needed. The goals of this study are figuring out whether current or currently proposed
future detectors can solve this problem, what kind of events are suitable for this purpose, and what kind
of analyses are effective.

Tests of General Relativity

Only with the observations of black hole and neutron star collisions in recent years have we had access to
observational tests of the behaviour of gravitational fields in the strong field regime. There are many theories
of gravity besides Einstein’s theory of general relativity that are seriously considered, but, unfortunately,
there are few predictions of what gravitational waves from black hole collisions might look like if these
other theories of gravity are correct. Almost all of the focus has been on obtaining predictions from general
relativity (which is hard-enough: for decades that goal alone seemed to be an intractable theoretical and
computational challenge). Without specific predictions from alternative theories of gravity, it is difficult
to construct tests that might falsify general relativity. One approach is to construct a parameterized
phenomenological description of the family of gravitational wave signals from black hole mergers in general
relativity, and then introduce perturbations of the parameters, deviating them from the correct values for
general relativity, thereby producing non-GR black hole merger-like waveforms. The signals observed in
the gravitational-wave detector data can be compared to these and constraints placed on the values of the
perturbation parameters, thereby constraining how much of a deviation from general relativity’s predictions
is admissible. Members of our group are attempting to construct a novel test of this type. The work is
on-going, and might lead to a new constraint on general-relativity, or if not, at least a statement of what
sort of future detector would be required to make the measurements required to perform the tests that are
being designed.

Test of General Relativity in Strong Gravitational Fields (Watarai)

General Relativity (GR), the standard theory of gravity, is only a low-energy effective theory, although it
explains well the observations made so far, and it is bound to break down at some point when we approach
the strong gravity region. Specifically, it has difficulties in predicting the singularity at which the laws of
physics break down, and in the impossibility of renormalization in terms of quantum theory. In order to
construct a theory of gravity that avoids these difficulties, it is essential not only to conduct theoretical
research but also to devise an appropriate method to analyze the obtained gravitational wave data and
to analyze the actual data in order to extract significant information from the data. Therefore, we are
devising a quantitative analysis method for the merge stage of the binary black hole coalescence process,
which is the most gravitationally intense region available through observations, and analyzing the actual
data with the aim of extracting information that will lead to an understanding of the physics of the strong
gravitational field.

Test of gravity with gravitational-wave polarizations (Nishizawa)

Many gravity theories that extend the general theory of relativity have been proposed so far, and it
is important to verify the correctness of the theory from various aspects with higher accuracy in order to
deepen our understanding of gravity. Since the first detection of gravitational waves, it has become possible
to investigate the nature of gravity in the vicinity of celestial bodies that emit gravitational waves, that
is, in a dynamical and extremely strong gravitational field. One of the ways for verifying gravity in such a
situation is the polarization modes of gravitational waves. The number of polarization modes is unique to
each gravity theory. There are two tensor modes in general relativity, while three or more polarization modes
in extended theories of gravity. In other words, the true gravity theory can be identified by examining the
number of polarization modes from the observation data. We constructed the mixed polarization model
including a scalar polarization as an additional one beyond general relativity and analyzed the actual
observation data of the gravitational wave detectors with the scalar-tensor polarization model. We found
no signs of polarizations inconsistent with the prediction of general relativit. Therefore, we obtained a new
result that supports the correctness of general relativity.

Observational constraint on azion dark matter with propagating gravitational waves (Tsutsui)

Most of matter in the Universe is invisible, which is called dark matter. A candidate of dark matter
is axion. Axions form clouds in a galactic halo and amplify and delay a part of gravitational waves
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propagating in the clouds. The Milky Way is surrounded by the dark matter halo composed of a number
of axion patches. Thus, the characteristic secondary gravitational waves is always expected right after the
reported gravitational-wave signals from compact binary mergers. We search the secondary gravitational
waves with a method optimized for the time delay and the amplification. Then, we found no significant
signal and constrained the axion coupling to the parity violating sector of gravity, which is at most 10
times improved from a previous study, Gravity Probe B.

Stochastic Gravitational-wave Background

While some gravitational wave sources like GW170817 are close, loud, and infrequent, we also anticipate
classes of gravitational wave sources that are distant, quiet, and numerous. Rather than distinct, impul-
sive, signals being detected from such sources we expect to observe them collectively as a diffuse “glow”
of random gravitational radiation coming from all directions on the sky — a stochastic gravitational-wave
background. Spacetime fluctuations in the very early Universe are expected to contribute to a cosmo-
logical gravitational-wave background, but that is expected to be undetectable with modern equipment.
A detectable astrophysical stochastic background of gravitational radiation could come from more recent
processes, for example black hole collisions in the early Universe, a population of cosmic strings, and so
on. Many of the possible sources of a stochastic gravitational wave background are conjectural; their dis-
covery would be a tremendous breakthrough. Some source of stochastic gravitational waves might not be
uniformly distributed on the sky, for example if they are confined to galaxies and are close enough that
the separation of galaxies on the sky is significant, or if, for example, there are gravitational lenses close to
us that magnify and make some parts of the sky appear brighter than others. Members of our group are
collaborating with researchers at the California Institute of Technology to develop and conduct a search
for anisotropic gravitational-waves.

Other gravitational-wave sources

A number of solutions of Einstein’s field equation for gravity are known that allow a vehicle to be
transported through the surrounding spacetime at speeds greater than the speed of light. All such solutions
of the field equation that are currently known share the property of requiring material with negative mass
to construct the spacetime field. Although anti-gravitating tensile material is believed to exist, and is
believed to have been responsible for large scale properties of our Universe today, there is no evidence
that anti-gravitating negative energy density material exists, and some hypothesize that its existence is
forbidden due to some yet undiscovered law of nature. Another property the solutions all possess is that
they quickly decay to flat space in their exteriors, which is usually imposed to simplify the mathematics
involved in finding such faster-than-light solutions. What if these two properties are connected? Perhaps
faster-than-light solutions can be found that include an out-going radiation component, and perhaps those
solutions don’t require negative mass. An everyday analogy can be seen: boats exist, boats move faster
than the velocity of surface waves in water, but boats that produce no wake while doing that are likely
impossible.

Therefore, for fun, members of our group have hypothesized what the gravitational-wave wake from a
faster-than-light spacetime bubble might look like, and have conducted a search for these signals in the
data of LIGO and Virgo. Measuring the sensitivity of the search, we can use a null result to put constraints
on the rate of near-Earth flybys of faster-than-light vehicles. This work is nearing completion.

Cosmic Strings (Tsuna)

Cosmic strings are one-dimensional high-energy structures proposed to be left over from the cooling
process of the early Universe. A broad spectrum of theories of fundamental physics predict their existence,
while they have never been discovered. Searching for them and either confirming their existence or putting
limits will teach us a great deal about fundamental physics. These strings occasionally form loops, which
are predicted to emit gravitational wave signals potentially within the reach of ground-based detectors such
as LIGO, Virgo and KAGRA. We led the analysis of data collected during the O3 observing run, searching
for evidence of these signals through searches of the burst signal and the stochastic background. While we
did not detect a significant signal from both probes, we were able to set strong constraints on the energy
scale and morphology of these strings. The results of this work were published in Physical Review Letters
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Development and Application of a Detection System for a Novel Class of Gravitational-Wave Transients
(Kuwahara)

We have developed a detection system for a novel class of gravitational- wave transients which is
Cherenkov-like gravitational waves. Since we do not know the actual waveform of gravitational Cherenkov
radiation, under the assumption that the waveform is similar to the waveform of Cherenkov radiation in
Electrodynamics, we conducted the investigation for 1 year data of O3. The ranking statistic obtained for
this search can be utilized to make constraints on the power, the velocity of the super-luminous sources,
and the distance from an observer to the trajectory of the source. This study can be also further discussed
for the Search for Extra-Terrestrial Intelligence assuming that such aliens have super-luminous spacecraft
like in Star Trek or Star Wars. Serendipitously, it has been discovered that the ad hoc waveform model
introduced here is an excellent match for some classes of transient noise events called “glitches”. For the
coming fiscal year, we will try improving ranking statistics and make stronger constraints.

Improvements of gravitational-wave detector sensitivity

Globally correlated magnetic noise (Nishizawa)

Correlation analysis between data obtained from multiple detectors is essential to detect the stochastic
gravitational-wave background. However, when global disturbances affect gravitational wave detectors,
correlations due to other than gravitational waves can appear and become a source of noise even in two
detectors that are sufficiently far apart. One of the main sources of such a correlation noise is the global
magnetic field, called the Schumann resonance. Based on the Fisher analysis, we discuss the impact of the
correlated magnetic noise on the detection of the stochastic gravitational-wave background. We show how
much the detector sensitivity to the stochastic gravitational-wave background is affected in the presence of
the correlated magnetic noise. We furthermore show that a network observation combining more than 3
detectors is quite essential and that KAGRA may play an important role in better separating the correlated
noise.

Study on sensitivity improvement for the future space-beased gravitational-wave detectors (Nishizawa)

The Japanese future space-based gravitational-wave detector, DECIGO, aims at detecting primordial
gravitational waves generated by inflation in the early Universe. However, as the prediction for the am-
plitude of the inflationary gravitational waves is highly uncertain, it is necessary to improve the target
sensitivity of DECIGO and enhance the possibility of the detection of the inflationary gravitational waves.
The current target sensitivity of DECIGO is limited by quantum noise (shot noise and radiation pressure
noise). However, squeezing is not available for DECIGO because of its long arm length and large optical
loss. In the case, the quantum locking method that controls main cavity length by feeding back the signal
from an external small auxiliary cavity can be used to reduce the radiation pressure noise. We extended the
quantum locking by incorporating optical spring and showed that the radiation pressure noise is reduced
further and the sensitive frequency band broadens [22].

People and Things

During the 2021 through 2022 academic year, one of our Master’s students, Mr. Kuwahara, successfully
defended his thesis and continued on to the doctoral program. Omne doctoral student, Dr. Tsuna, suc-
cessfully defended his thesis and continued on to a postdoctoral appointment at the California Institute
of Technology. And two doctoral students, Mr. Ohta and Mr. Chan, successfully secured employment in
industry.

6.1.2 Kenta Hotokezaka group

Kilonova is one of the electromagnetic wave-counterparts associated with binary neutron star mergers.
The radioactive decay of the neutron-rich material released at the time of coalescence is the energy source



6.1. ACTIVITY REPORT 30

of kilonovae. It is important that this phenomenon is particularly related to the origin of heavy elements.
We conducted research from both observational and theoretical perspectives on kilonovae [, I, 2.

A kilonova enters the nebular phase, where emission lines arising from atomic transitions escape from
the ejecta without interaction. Thus, observing the nebular spectrum will provide us valuable information
on the elements synthesized in merger ejecta. We study the physical conditions and emergent spectra in
the nebular phase under the assumption that the ejecta is composed of lanthanides [I]. We find that the
time evolution of the thermodynamic quantities are roughly constant with time.

We also study the multi-wavelength behaviour of non-thermal afterglow produced by a jet [3, @, &, I1]. In
particular, we conducted a VLA observation at 3.5 year after GW170817 [B]. The radio flux was detected
at the level of 10 uJy. This flux level agrees with the expectation of the jet afterglow. Therefore, we put a
constraint on the late-time contribution of the kilonova afterglow.

Radio transient

The radio transient sky is known to be somewhat quiet. However, thanks to the recent progress of
technology of radio interferometers, we are entering a new-era that astrophysical explosions can be dis-
covered by radio interferometers. We study a peculiar radio transient, VT J121001+495647, which was
discovered in the first epoch image of the VLA all sky survey [@]. This transient has a very long time scale,
~ 20 years, and very bright luminosity, suggesting that the progenitor is a supernova explosion with dense
circum-stellar medium at 10'” cm. Surprisingly, we found that a MAXI unidentified soft-Xray transient at
the same location, of which properties can be explained by the existence of mildly relativistic material.

Black holes and neutron stars

We have studied that black holes and neutron stars in the context of the progenitors of gravitational-
wave mergers [B]. We showed that it is practically impossible that neutron star mergers in globular clusters
result in the second generation mergers, which fill the lower mass gap. This is because the required stellar
density and escape velocity are too high in order to have second generation mergers for neutron stars. On
the other hand, we have found that the upper mass gap may be filled by dynamical capture of massive
black holes in globular clusters.

We have also discussed the possibilities that the upcoming astronomical surveys can find free-floating
black holes and neutron stars [T, I2].

Chemical evolution

The origin of r-process elements in the Galaxy remains an astrophysical mystery. In particular, one of
the big question is when r-process elements were produced, i.e., recently? or a several billion of years ago?
We studied the history of the production of r-process elements through the observed abundances of a stellar
stream [§] and field stars [0]. We found that the abundances of extremely metal-poor stars point to that
there is some delay between the star formation and the production of r-process. This might be a hint that
r-process elements have been predominantly produced by neutron star mergers.

Galactic Nuclei

Last year, we studied the nature of star formation in galactic nuclear regions based on the recent high-z
quasar observations. As a result, we found that the extremely high iron to magnesium abundance ratio
observed in quasars requires a highly top-heavy stellar mass distribution (Dr. Toyouchi).



6.2. ACTIVITY REPORT OF AFFILIATES 31

6.2 Activity report of Affiliates

6.2.1 Masaki Ando

Ando group is working on experimental research for gravitational-wave observation, in particular for
large projects such as KAGRA and B-DECIGO. KAGRA is a gravitational-wave antenna at Kamioka,
Gifu prefecture in Japan. We are playing a key role since the conceptual study phase before the start
of the project in 2010. The installation of the main components have been finished in FY2018, and we
are in the phase of commissioning; shakedown, and tuning for the full operation of the interferometer. In
FY2020, the KAGRA interferometer started the observation run, named O3GK. Our group members led the
commissioning works and operation of the interferometer. We are also working on B-DECIGO, which is a
space-borne gravitational wave antenna with an observation band of around 0.1 Hz. We made a theoretical
study on science cases by this mission as well as experimental development of critical subsystems, such
as laser interferometer, stabilized laser source, drag-free system, and low-noise thruster. In FY2021, we
continued a system design study with a company to show the feasibility of the full mission. This activity
was financially supported by RESCEU.

6.2.2 Mamoru Doi

We developed instruments of optical follow-up of gravitational sources. Primary instrument is Tomo-e
Gozen (Tomo-e) on the 1-m Kiso Schmidt telescope. We carried out northern sky survey every clear night.
The survey area of each night was about 7000 square degrees once, followed by 2000 square with about
half hour cadence. We are finding many transients, such as supernovae, Near Earth Objects, variable
stars, and so on. We found early flash of a Type-Ia supernova (SN2020hvf) within the half hour cadence
area in 2020, and found that the early flash was due to an interaction between the supernova ejecta and
the circumstellar matter. Our finding constrains the progenitor of Type-Ia supernova, and the result was
published on ApJL, and web press release was carried out. We also submitted a paper on NEO. Another
activity was to develop an optical imaging spectrograph, TriCCS on the Seimei 3.8-m telescope under
collaboration with Kyoto University. Three band fast (< 98 frame per second, fps) simultaneous imaging
mode was possible with three CMOS sensor cameras. Low resolution spectroscopy mode was also developed,
and the first commissioning observation was carried out in March 2022. Both Tomo-e and TriCCS will be
ready to follow GW 04 observations. Also two GW follow-up papers were published, one for GW event
S190510g with Subaru/HSC, and the other for J-Gem activities for O3.

In order to get a clue to understand the nature of Fast Radio Bursts (FRBs), we have conducted a search
for their optical counterparts using the high-speed observing facilities. Analyzing 24.4 fps optical data of
repeating FRB 20190520B obtained by Tomo-e simultaneously with radio observations by the Five-hundred-
meter Aperture Spherical radio Telescope (FAST), we obtained deep upper limits on the optical emission
from the 11 radio bursts detected by FAST. The result was submitted in March 2022. Further observations
of repeating FRBs are ongoing using TriCCS. Simultaneous radio-optical survey of non-repeating FRBs
using Tomo-e is also in progress in collaboration with the FRB research group using Canadian Hydrogen
Intensity Mapping Experiment (CHIME).
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7 Project 3. Formation and characterization
of planetary systems

7.1 Activity Report

Project 3 “Formation and characterization of planetary systems” approaches the problem both theoreti-
cally and observationally through the collaboration with members in Departments of Physics, Astronomy,
and Earth and Planetary Sciences. We show several highlights of our research this year.

7.1.1 A new formation scenario of a counter-rotating circumstellar disk

We find a new formation pathway of a counter-rotating circumstellar disk in a triple protostar system
simulated from a turbulent molecular cloud core with no magnetic field. The tertiary protostar forms via
the circumbinary disk fragmentation and the initial rotational directions of all the three circumstellar disks
are almost parallel to that of the orbital motion of the binary system. Their mutual gravito-hydrodynamical
interaction for the subsequent ~ 10* yr greatly disturbs the orbit of the tertiary, and the rotational directions
of the tertiary disk and star are reversed due to the spiral-arm accretion of the circumbinary disk. The
counter-rotation of the tertiary circumstellar disk continues to the end of the simulation (~ 6.4 x 10* yr
after its formation), implying that the counter-rotating disk is long-lived. This new formation pathway
during the disk evolution in Class 0/I Young Stellar Objects possibly explains the counter-rotating disks
recently discovered by ALMA.

7.1.2 Disentangling the stellar inclination of transiting planetary systems using
the stellar differential rotation

The Rossiter-McLaughlin (RM) effect has been widely used to estimate the sky-projected spin-orbit
angle, A, of transiting planetary systems. Most of the previous analysis assume that the host stars are
rigid rotators in which the amplitude of the RM velocity anomaly is proportional to v, sini,. When
their latitudinal differential rotation is taken into account, one can break the degeneracy, and determine
separately the equatorial rotation velocity v, and the inclination i, of the host star. We derive a fully
analytic approximate formula for the RM effect adopting a parameterized model for the stellar differential
rotation. For those stars that exhibit the differential rotation similar to that of the Sun, the corresponding
RM velocity modulation amounts to several m/s. We conclude that the latitudinal differential rotation
offers a method to estimate 4., and thus the full spin-orbit angle v, from the RM data analysis alone.

7.1.3 Architecture of planetary systems predicted from protoplanetary disks
observed with ALMA

Recent ALMA observations have identified a variety of dust gaps in protoplanetary disks, which are
commonly interpreted to be generated by unobserved planets. Predicting mass of such embedded planets is
of fundamental importance in comparing those disk architectures with the observed diversity of exoplanets.
The prediction, however, depends on the assumption that whether the same gap structure exists in the
dust component alone or in the gas component as well. We assume a planet can only open a gap in the gas
component when its mass exceeds the pebble isolation mass by considering the core accretion scenario. We
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then propose two criteria to distinguish if a gap is opened in the dust disk alone or the gas gap as well when
observation data on the gas profile is not available. We apply the criteria to 35 disk systems with a total of
55 gaps compiled from previous studies, and classify each gap into four different groups. The classification
of the observed gaps allows us to predict the mass of embedded planets in a consistent manner with the
pebble isolation mass. We find that outer gaps are mostly dust alone, while inner gaps are more likely to
be associated with a gas gap as well. The distribution of such embedded planets is very different from the
architecture of the observed planetary systems, suggesting that the significant inward migration is required
in their evolution.

7.1.4 Auto—differentiable spectral model for full Bayesian analysis of exoplanet
spectra

In FY2021, we released ExoJAX, an automatically differentiable spectral model that enables Bayesian
modeling of high-dispersion spectra through HMC-NUTS, which can perform Markov chain Monte Carlo
on complex models [8]. ExoJAX was constructed using Google’s auto—differentiable package, JAX and
Uber-AI’'s Numpyro stochastic programming language.

We tested ExoJAX on brown dwarfs close to exoplanets and were able to model high-dispersion spectra
at a level never seen before. In addition, ExoJAX is the world’s first spectral model that can calculate
everything from molecular databases to observed spectra end-to-end, whereas previous models require a
grid-based model of molecular cross sections to be prepared in advance before calculating the spectral
model. Because of this first-principles model, ExoJAX is the first spectral model in the world to have the
ability to directly compare the effects of molecular databases with observed quantities.

ExoJAX is being developed according to the standard methods of the current open source community
(open development via Github, review system via pull request, test environment construction via pytest,
extensive documentation via sphinx, pip install, etc.), and several external Several external participants have
also started to participate in the development. Although there are still few such examples in the domestic
astronomy community, the benefits of introducing an open source development culture for astronomical
software are great. We believe that the fact that this has started in Japan is one of the achievements of
the satellite center.

7.1.5 First detection of neutral titanium in exoplanet atmospheres

Detection of molecules and atoms in exoplanet atmospheres can also provide information on planet
formation. An example of this is the world’s first detection of neutral titanium (Ti) in HD 149026b, which
is one of the results of this year’s study [6]. Since TiO was not detected in this source, the fact that Ti
was detected and TiO was non-detected indicates that the C/O ratio is high. Although it is difficult to
generalize due to various models, the high C/O ratio in the standard view means that water vapor was not
available in the atmosphere at the time of formation, suggesting that water formed far from the snow line,
where it is solid, and migrated close to the star.

7.1.6 First Detection of Hydroxyl Radicals in Exoplanet Atmospheres

Astronomers are familiar with the Hydroxyl Radicals (OH), which is also found in trace amounts in
Earth’s atmosphere. This molecule coexists in the atmosphere via ultraviolet light and thermal divergence
when water is present in the atmosphere. Using a high-dispersion technique with the Subaru Telescope
IRD, OH was detected in exoplanet atmospheres for the first time in the world. The exoplanet is WASP33b,
a hot Jupiter, which was also the first TiO (titanium dioxide) exoplanet to be detected with Subaru HDS.
The OH detected in this study also has a bright line signal, and it is certain that WASP33b has a strong
temperature inversion layer. Thus, the high-dispersion method is proving to be extremely useful for the
characterization of actual planetary atmospheres [6].
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7.1.7 Discovery of Close-in dipper

In the first year, TESS big data analysis discovered many dippers in the southern sky — objects that
are thought to be in transit (dipping) disks. In the next fiscal year, four of these objects were followed
up with Subaru HDS and CAF E /HIDES to investigate their properties[]. Of particular interest is the
discovery of the close-in binary dipper shown in Figure 3. This object was first confirmed to have a strong
time-varying H alpha line. Since the dip period of Dipper coincides with the period of the binary star, the
dip is expected to be caused by the disk being partially obscured by the rotating binary star. This is the
reason why we can understand the formation of a circumstellar planet. This means that Dipper is a good
target for understanding the formation of binary planets.

7.1.8 A rich population of free-floating planets in the Upper Scorpius young
stellar association

The nature and origin of free-floating planets (FFPs) are still largely unconstrained because of a lack
of large homogeneous samples to enable a statistical analysis of their properties. So far, most FFPs have
been discovered using indirect methods; microlensing surveys have proved particularly successful to detect
these objects down to a few Earth masses. However, the ephemeral nature of microlensing events prevents
any follow-up observations and individual characterization. Several studies have identified FFPs in young
stellar clusters and the Galactic field but their samples are small or heterogeneous in age and origin.
Here we report the discovery of between 70 and 170 FFPs (depending on the assumed age) in the region
encompassing Upper Scorpius and Ophiuchus, the closest young OB association to the Sun. We found an
excess of FFPs by a factor of up to seven compared with core-collapse model predictions, demonstrating
that other formation mechanisms may be at work. We estimate that ejection from planetary systems might
have a contribution comparable to that of core collapse in the formation of FFPs. Therefore, ejections due
to dynamical instabilities in giant exoplanet systems must be frequent within the first 10 Myr of a system’s
life.

7.1.9 37 new validated planets in overlapping K2 campaigns

We analysed 68 candidate planetary systems first identified during Campaigns 5 and 6 (C5 and C6) of
the NASA K2 mission. We set out to validate these systems by using a suite of follow-up observations,
including adaptive optics, speckle imaging, and reconnaissance spectroscopy. The overlap between C5
with C16 and C18, and C6 with C17, yields light curves with long baselines that allow us to measure the
transit ephemeris very precisely, revisit single transit candidates identified in earlier campaigns, and search
for additional transiting planets with longer periods not detectable in previous works. Using VESPA, we
compute false positive probabilities of less than 1 per cent for 37 candidates orbiting 29 unique host stars
and hence statistically validate them as planets. These planets have a typical size of 2.2 R(Earth) and
orbital periods between 1.99 and 52.71 d. We highlight interesting systems including a sub-Neptune with
the longest period detected by K2, sub-Saturns around F stars, several multiplanetary systems in a variety
of architectures. These results show that a wealth of planetary systems still remains in the K2 data, some
of which can be validated using minimal follow-up observations and taking advantage of analyses presented
in previous catalogues.

7.1.10 Rotating Motion of the Outflow of IRAS 16293-2422 A1l at Its Origin
Point Near the Protostar

The Class 0 protostar IRAS 16293-2422 Source A is known to be a binary system (Al and A2) or even
a multiple system. We have observed this source in the SO and OCS lines at 3.1 mm with ALMA. The
northwest-southeast (NW-SE) outflow is detected in the SO (Jx = 25-17) line. Based on the morphology
of the SO distribution, this bipolar outflow structure seems to originate from the protostar Al and its
circumstellar disk, or the circummultiple structure of Source A. The rotation motion of the NW-SE outflow
is detected, from which we evaluate the specific angular momentum of the outflowing gas to be (8.6-14.3) x
10~* km s~! pc. If the driving source of this outflow is the protostar Al and its circumstellar disk, it can
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be a potential mechanism to extract the specific angular momentum of the disk structure. These results
can be a hint for the outflow launching mechanism in this source.([IT])

7.1.11  Molecular Distributions of the Disk/Envelope System of L483: Prin-
cipal Component Analysis for the Image Cube Data

We have observed 23 molecular lines toward the Class 0 protostellar source L483 with ALMA and
have performed principal component analysis (PCA) for their cube data (PCA-3D) to characterize their
distributions and velocity structures in the vicinity of the protostar. Most oxygen-bearing complex organic
molecule lines have a large correlation with the first principal component (PC1), representing the overall
structure of the disk/envelope system around the protostar. Contrary, the C!*O and SiO emissions show
small and negative correlations with PC1. The NHyCHO lines stand out conspicuously at the second
principal component (PC2), revealing more compact distribution. Thus, PCA-3D enables us to elucidate
the similarities and the differences of the distributions and the velocity structures among molecular lines
simultaneously, so that the chemical differentiation between the oxygen-bearing complex organic molecules
and the nitrogen-bearing ones is revealed in this source.([7])

7.1.12 Exploring the 100 au Scale Structure of the Protobinary System NGC
2264 CMM3 with ALMA

We have observed the young protostellar system NGC 2264 CMMS3 in the 1.3 mm and 2.0 mm bands
at a resolution of 70 au with ALMA. The structures of two distinct components, CMM3A and CMM3B,
are resolved in the continuum images of both bands. The spectral index a between 2.0 and 0.8 mm is
derived to be 2.4-2.7 and 2.4-2.6 for CMM3A and CMM3B, respectively, indicating optically thick dust
emission and/or grain growth. A velocity gradient in the disk/envelope direction is detected for CMM3A
in the CH3CN, CH30H, and '*CH3OH lines detected in the 1.3 mm band, which can be interpreted as
the rotation of the disk/envelope system. From this result, the protostellar mass of CMMB3A is roughly
evaluated to be 0.1-0.5 Mg,, by assuming Keplerian rotation. The OCS emission line shows a velocity
gradient in both outflow direction and disk/envelope direction. A hint of outflow rotation is found, and
the specific angular momentum of the outflow is estimated to be comparable to that of the disk.([I3])

7.1.13 Primitive nature of Ryugu materials revealed by data from remote
sensing, lander, and Earth-returned samples

In Dec. 2020, JAXA ’ s Hayabsua2 returned to the Earth and successfully delivered its capsule with
samples from asteroid Ryugu. We participated in curation activities of Ryugu samples by building a new
spectrophotometric measurement system in our lab and brought it to JAXA curation facility [T4]. The
results of the measurements show that both albedo and reflectance spectra of Earth-returned samples and
those of the global average of Ryugu agree with each other well, suggesting that Earth-returned samples
are good representative of asteroid Ryugu [[H]. These curation measurements have served as the basis for
the ongoing initial detailed geochemical analyses of Ryugu samples.

Such sample measurement activities promoted remote-sensing data analyses particularly regarding ma-
terialistic properties of Ryugu materials [[6]. We had a number of major findings about Ryugu. First is
the discovery of extremely high porosity (>70 percent) boulders on Ryugu [I6]. These high porosities are
much larger than average porosity (30 - 50 percent) of Ryugu boulders and as high as that for cometary
materials. These high-porosity boulders on Ryugu also possess significantly lower reflectance (~0.016) than
the Ryugu average (~0.019). They are found only on the floors of few fresh small (~10 m diameter) craters
on Ryugu and but not found on all fresh craters including the artificial crater generated by the small
carryon impactor SCI brought by Hayabusa2. This observation suggests that the extremely-high-porosity
materials found on Ryugu were not resulted from impact comminution of low-porosity materials by likely
by excavation of intrinsically high porosity materials at shallow depth. The distribution pattern of these
extremely-high-porosity and low-reflectance materials suggests that their small fragments may be spread
widely on Ryugu surface and could be contained in returned samples.
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Second, an important finding came from thermal infrared multi-band imager MARA on the MASCOT
lander carried by Hayabusa2 []. MARA has four narrow-band filters (5.5-7, 8-9.5, 9.5-11.5, and 13.5-15.5
nm). Although thermal infrared spectra of carbonaceous chondrites have not been characterized extensively,
recent laboratory studies as well as OSIRIS-REx mission results have shown that carbonaceous chondrite
samples with high abundance of hydrated minerals have large drop in emissivity from 8-9.5 pm to 9.5-
11.5 pm. The MARA data indicate that Ryugu surface exhibits such band-ratio pattern, suggesting that
Ryugu materials may have more hydrated minerals than previously thought. This finding turned out to be
consistent with the results of the curation measurements of actual returned samples [[5]. Such agreement
between thermal infrared spectroscopic observations and returned sample analysis supports that thermal
infrared spectroscopic observations could be a powerful tool for measuring the hydration state of C-type
asteroids.

Third, high-precision observations of the largest and brightest boulder, Otohime Saxon, on the south
pole of Ryugu showed that it may have slight but statistically significant depth of absorption band at 0.7
nm, which would occur on iron-rich serpentine [I5]. This study further found evidence for 0.7-pm band
on smaller boulders on the northern pole. Because 0.7-nm band easily disappears upon space weathering
and heating, the presence of this band on a certain type of boulders on Ryugu suggests that at least some
materials on Ryugu would have escaped from extensive heating in its parent body or on Ryugu ’ s surface.
These materials could also be found in Ryugu ~ s samples; they could tell us the thermal history of Ryugu
materials.

7.1.14 Evolution of phenotypic fluctuation under host-parasite interactions

Different parasite-types attack hosts of certain phenotypes. Through numerical simulations of the evo-
lution of the host genotype-phenotype mapping, we found that hosts increase phenotypic variation by
increasing phenotypic fluctuations if the interaction is sufficiently strong  [I9]. Depending on the degree
of noise in gene expression dynamics, there are two distinct strategies for increasing phenotypic variances:
stochasticity in gene expression or genetic variances. The former strategy, which can work over a faster
time scale, leads to a decline in fitness, whereas the latter reduces the robustness of the fitted state. Our
results provide insights into how phenotypic variances are preserved and how hosts can escape being at-
tacked by parasites whose genes mutate to adapt to changes in parasites. These two host strategies, which
depend on internal and external conditions, can be verified experimentally via the transcriptome analy-
sis of microorganisms. We investigate how this balance depends on the size of a collective (denoted by
N) and the mutation rate of components (m) through mathematical analyses and computer simulations
of multiple population genetics models. We first confirm a previous result that increasing N or m accel-
erates within-collective evolution relative to among-collective evolution, thus promoting the evolution of
cheating[22].

7.1.15 A reverse stroke characterizes the force generation of cardiac myofila-
ments

We measured the force production of cardiac myofilaments using optical tweezers. The measurements
revealed that stepwise force generation was associated with a higher frequency of backward steps at lower
loads and higher stall forces than those of fast skeletal myofilaments. To understand these unique collective
behaviors of cardiac myosin, the dynamic responses of single cardiac and fast skeletal myosin molecules,
interacting with actin filaments, were evaluated under load. The cardiac myosin molecules switched among
three distinct conformational positions, ranging from pre- to post-power stroke positions, in 1 mM ADP
and 0 to 10 mM phosphate solution. In contrast to cardiac myosin, fast skeletal myosin stayed primarily in
the post-power stroke position, suggesting that cardiac myosin executes the reverse stroke more frequently
than fast skeletal myosin [73]. In cell work, we propose a machine learning approach to categorize the
vesicle transport into active transport and random movement, using the features computed from the vector
analysis of 3D vesicle transport trajectories. This approach is expected to simplify the process for vesicle
transport data analysis [4] [25].
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7.1.16 Experimental demonstration of operon formation catalyzed by trans-
poson sequence

Operons are functional units of clustered genes under the control of the same regulatory machinery. These
operons are a hallmark of the genomic architecture of prokaryotes, and thus elucidation of operon formation
might be important for understanding the regulatory mechanisms of ancient biological systems. However,
the mechanism by which two genes placed far apart gradually come close and form operons remains to be
elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion
sequences can facilitate the formation of operons by consecutive insertion-deletion-excision reactions [37].
This mechanism barely leaves traces of insertion sequences and is thus difficult to detect in nature. In
this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The
insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of
bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that
supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding 1S3
and formed new operons. This study shows how insertion sequences can facilitate the rapid formation
of operons through locally increasing the structural mutation rates and highlights how coevolution with
mobile elements may shape the organization of prokaryotic genomes and gene regulation.

7.1.17 Development of new imaging technology to measure ”living states” of
cells.

We have extended the application of our fluorescent probes to visualize cellular states such as transcription
and metabolism. We have clarified the timing when transcription of foreign genes starts after transfection
[86]. Yaginuma has found the spatial synchronization of metabolic states among adjacent cells [37]. We
also developed technologies to quantitatively measure the living state of cells without fluorescent staining.
The amount of intracellular biological components (proteins, lipids, nucleic acids, etc.) can be estimated
from the phase delay when light passes through a cell. Inuzuka developed a new method to measure phase
delay without conventional interferometry. This robust and stable configuration will be beneficial for the
application in space exploration, since it is less susceptible to vibration and does not require sophisticated
adjustments.

7.1.18 Thermodynamic trade-off relations and relationship to differential ge-
ometry

Thermodynamic trade-off relations are universal thermodynamic laws to explain the accuracy and speed
of the information processing in biochemical systems. Several thermodynamic trade-off relations, such
as thermodynamic uncertainty relations and speed limits, have been found in recent years. Nowadays,
a deep understanding of thermodynamic trade-off relations is required based on concrete mathematical
theories such as differential geometry. To deepen our understanding of thermodynamic trade-off relations,
we generalized thermodynamic trade-off relations in deterministic chemical reaction networks [B%] and
clarified the relationship to the differential geometric theories such as the optimal transport theory [BY, &)
and information geometry [@0] in this year. Based on these results, we can geometrically discuss the
accuracy of the information processing in biochemical systems.
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