Production Pathways of Carbon-Chain Molecules Inferred from their ¹³C Isotopic Species

Nami Sakai¹, Masafumi Ikeda¹, Masaru Morita¹, Yoshihiro Osamura², Takeshi Sakai³, Shuro Takano⁴, and Satoshi Yamamoto¹ (¹Dept. of Physics, The Univ. of Tokyo, ²Kanagawa Inst. of Tech., ³Nobeyama Radio Observatory, ⁴Nobeyama Radio Observatory and Graduate University for Advanced Studies)

(Sakai et al. 2007, ApJ, 663, 1174)

Abstract

We have observed the rotational spectral lines of ¹³CCS and C¹³CS with GBT in TMC-1 and L1521E, and have found that the abundances of these two isotopic species are significantly different from each other. This indicates that the two carbon atoms are nonequivalent in the main production pathway. This result gives a strong constraint on the production mechanism of CCS, and finally the CH + CS reaction is recognized as the most probable route. Furthermore ¹³CCS is found to be diluted in comparison with the interstellar ¹³C abundance. This is very novel, because the heavy isotope generally tends to fractionate into molecules due to the lower zero-point vibrational energies. If CCS is mainly produced by the CH + CS reaction, the dilution of ¹³CCS originates from the dilution of ¹³CCS and CC¹³CS are not. Furthermore, we have found in the IRAM 30m observation with GBT, we have also found that ¹³CCCS is diluted, whereas C¹³CCS and CC¹³CS are not. Furthermore, we have found in the IRAM 30m observation that the abundances of ¹³CCH and C¹³CH are also found that ¹³CCF and ¹³CCH and ¹³CCH and ¹³CCH are also found that ¹³CCH and ¹³CCH and ¹³CCH are also found that ¹³CCH and ¹³CCH and ¹³CCH are also found that ¹³CCH are also foun

