Content of Negative Ions toward a Low-Mass Protostar, L1527

of molecular anions in star forming

region ! $(C_nH^-, C_nN^- \text{ etc.})$

V_{LSR} [km s⁻¹]

First detection of $C_4 H^2$

for a molecular cloud!

 $[C_4H^-]/[C_4H]: 6.8 \times 10^{-3} \%$

(Sakai et al. 2007, ApJ, submitted)

Detection of C₄H

0.015

2 0.01

€0.005

0

0.005

u-tokvo.ac.ip

//www.nro.nao.ac.jp/~nro45mrt/ 45M/IMG/IMGEN/iau 45m.html)

Contact: Nami Sakai

-mail: nami@taurus.nhvs.s

Nami Sakai¹, Takeshi Sakai², Yoshihiro Osamura³, and Satoshi Yamamoto¹ (1Dept. of Physics, The Univ. of Tokyo, 2Nobeyama Radio Observatory, 3Kanagawa Institute of Technology)(Sakai et al. 2007a, ApJ, 667, L65) Abstract We have detected the J = 7 - 6 (19.3 GHz), 8 - 7 (22.0 GHz), and 15 - 14 (41.3 GHz) lines of C₆H⁻ toward a low-mass star-forming region of L1527 with GBT and Nobeyama 45 m telescope. We have also detected the J = 15/2 - 13/2 and 33/2 - 31/2 lines of the corresponding neutral species, C₆H, and the $8_{1,8} - 7_{1,7}$ line of C₆H₂ in L1527. This is the first detection of these three species in star forming regions. The intensities of the J = 7-6, 8-7, and 15-14 lines of C₆H⁻ are 14, 26, and 26 mK (T_{MB}), respectively. The column density of C₆H⁻ is (5.8±1.8) $\times 10^{10}$ cm⁻², which is comparable to that in TMC-1, although the column density of C₆H in L1527 is about 1/5 of that in TMC-1. Thus the [C₆H⁻]/ $[C_6H]$ ratio is evaluated to be 0.093±0.029, being higher than that in TMC-1 by a factor of 4. The high $[C_6H^-]/[C_6H]$ ratio is discussed in terms of the simplified chemical model. The present result demonstrates importance of the anion chemistry in a dense part of the star forming region. The chemical simulation of the $[C_6H^-]/[C_6H]$ ratio in the gravitationally contracting cloud would be interesting. L1527 Background **3 Exceptionally carbon-chain-rich protostar, IRAS 04368+2557** Interstellar Clouds · · · · Low Ionization Plasma $f \sim 10^{-4}$ for diffuse clouds We have found that various L1527 $f \sim 10^{-8}$ for dense clouds carbon-chains exist in a 0.03 C₆H, J = 15/2 - 13/2, f 0.16 C₆H, J = 15/2 *dense* and *warm* part of **\star** Positive Charge : H₃⁺, HCO⁺, He⁺, H⁺, etc. the star-forming region. ★Negative Charge : electron, negatively charged dust dimments. (including PAH), molecular anion ex. C₄H, C₄H₂, C₅H, C₆H, C₆H₂, HC₇N, HC₉N, CH₃CCH, etc. NOT DETECTED ! C.H. J = 15/2 - 13/2C.H. J=15/2 - 13/2 0.03 **DThe best candidates of molecular anion are carbon-chains** Long Carbon-Chains ! **Electron Affinity:** $C_{2n}H$ series \implies $C_{2n}H^{-}$ series Strong Emission ! CCH (C₂H) $CCH^{-}(C_{2}H^{-})$ EA = 2.97 eVL1527 C.H. N = 9 - 8, F. C6H2. 81.8 $CCCCH(C_4H)$ $CCCCH^{-}(C_4H^{-})$ EA = 3.56 eV× 1.5 $1.7 \text{ K} (T_{\text{MB}})$ $CCCCCCH(C_6H)$ $CCCCCCH^{-}(C_{6}H^{-})$ EA = 3.81 eVCCCCCCCH ($C_{s}H$) CCCCCCCH⁻ ($C_{s}H$ ⁻) EA = 3.97 eV3 1 5 6 7 (Sakai et al. ApJ, 2007b, in press.) *cf.* CS : EA = 0.21 eVfiles of C₆H and C₆H₂ obser rd L1527 and TMC-1 Large electron affinity CO: EA < 0 eV& **Detection of C₆H⁻in L1527** Abundant in cold dark clouds $H_2O: EA < 0 eV$ **(4)**Column density of C₆H⁻: TMC-1 vs. L1527 0.03 $C_6 H^-, J = 7 - 6$ **②First detection of carbon-chain anions in the laboratory** 0.02 0.01 & interstellar clouds , Դ. Ոլուս, որիներու հերաներու հերաներու հերաներու հերաներու հերաներու հերաներու հերաներու հերաներու հերաներու հե TMC-1 L1527 $C_6 H^ T_{\rm rot}$ 9.5 K \sim 5 K * -0.02 ★TMC-1: Cold Starless Core C₆H⁻ $0.6 imes10^{11}\,\mathrm{cm}^{-2}$ 0.03 Ν $1 \times 10^{11} \, \mathrm{cm}^{-2}$ * ★IRC+10216: Evolved Star 0.02 (McCarthy, M. C. et al. 2006) 0.01 $T_{\rm rot}$ 6.1 K 12.0 K C_8H^- C₆H $0.6 imes10^{12}\,\mathrm{cm}^{-2}$ ★TMC-1 (Brüenken, S. et al. 2007) -0.02 Ν $3 imes 10^{12}\,\mathrm{cm}^{-2}$ 0.04 ★IRC+10216 (Remijan, A. et al. 2007) 0.03 2.5 % * 9.3 % $[C_6H^-]/[C_6H]$ 0.02 C.H⁻ 0.01 (* Taken from McCarthy et al. 2006) ★IRC+10216 (Cernicharo, P. et al. 2007) -0.01 $[C_6H]/[C_6H^-]$ is much higher than that in TMC-1 ! (McCarthy, M. C. et al. 2006) Radiative Recombination **Origin of high [C₆H⁻]/[C₆H] ratio** $M^+ + e \rightarrow M + h \nu (slow) (\sim 10^{-12} \text{ cm}^{-3} \text{ s}^{-1})$ Neutralization OWhy $[C_6H^-]/[C_6H]$ is higher for L1527 ? **5**Formation pathways M^+ + G⁻ \rightarrow M + G (fast) (~10⁻⁷ cm⁻³ s⁻¹) 1) radiative attachment Abundant $G^- \Rightarrow$ Low Ionization Degree ?? $[C_6H^-]$ $[e](k_1 + k_2[C_6H_2]/[C_6H])$ $k_{eff}[e]$ $C_6H + e \rightarrow C_6H^- + h \nu$ We should know the total abundance **OBSERVATION** ~

 $\frac{[C_{6}H]}{[C_{6}H]} = \frac{(k_{3}[H] + k_{4}[M^{+}] + k_{5}[G])}{(k_{3}[H] + k_{4}[M^{+}] + k_{5}[G])}$ 2) dissociative attachment Assuming $[M^+] = [e]$ and $[H] = 1/[H_2]$, $C_6H_2 + e \rightarrow C_6H^- + H (+ 16 \text{ kJ/mol})$ For $n \le 10^6$ cm⁻³: Associative detachment 3) is effective $C_nH^- + H (+ 47 \text{ kJ/mol @ } n=8)$ (- 26 kJ/mol @ n=4) $[C_6H^-]$ $k_{eff}[e]$ •••• TMC-1 case $(n \sim 10^4 \text{ cm}^{-3})$ 6 Destruction pathways $\overline{[C_6H]}$ $\overline{k_3[H]}$ 3) associative detachment (For $n \ge 10^6$ cm⁻³ :Neutralization 4) is effective $C_6H^- + H \rightarrow C_6H_2 + e (+ 158 \text{ kJ/mol})$ $[C_6H^-] \sim \frac{k_{eff}}{2}$ (triacetylene) · · · L1527 case $(n \ge 10^{6} \text{ cm}^{-3})$ $[C_6H]$ k, Because of $[H] = 1/[H_2]$, associative detachment 3) $C_6H^- + M^+ \rightarrow C_6H + M$ becomes less important in higher density condition ! C_6H^- + $G \rightarrow C_6H$ + $G^ \Rightarrow$ L1527 : low destruction rate $\frac{1}{2}$

(hexapentaenylidene)

4) neutralization

5) electron transfer, etc.

 \rightarrow products

 $cf; C_nH_2 + e -$

(cumulene)