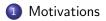
Early warning of third generation gravitational wave detector for precessed compact binary merger

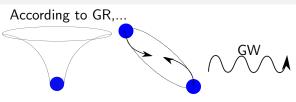

Takuya Tsutsui^{AB} Atsushi Nishizawa^B Soichiro Morisaki^C

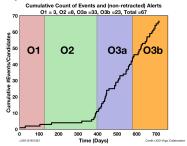
^AUniversity of Tokvo

^BResearch Center for the Early Universe

^CInstitute for Cosmic Ray Research University of Tokyo

August 19, 2020




@LIGO (twitter)

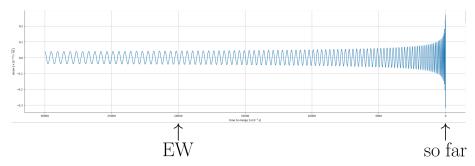
What is GW?

Binary merger perturbs spacetime (GW)

Many GWs have been detected by detectors

LIGO-Hanford

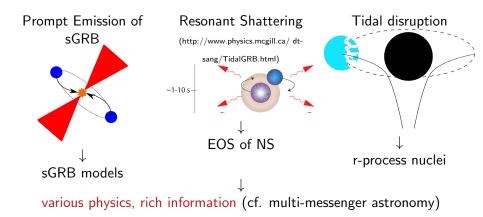
LIGO-Livingston


Virgo

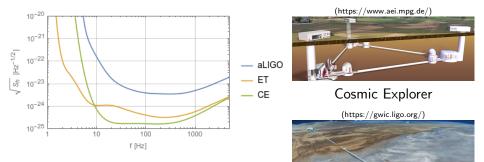
KAGRA

Application: Early Warning

GW is emitted during the inspiral phase


 $\rightarrow\,$ GW can be detected before the merger

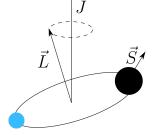
(\sim O3, EW has not done yet, whereas O4 \sim , been planed.)


Why does Early Warning make us happy?

 ${\sf EW} \to {\rm \ The\ binary\ can\ be\ localized\ before\ the\ merger}$

 $\rightarrow\,$ EM counterpart can be observed directly

3rd Generation detectors



- ightarrow 3G detectors are sensitive from \sim 1 Hz
- \rightarrow Low frequencies become more important than so far

Einstein Telescope

Properties of NSBH binary

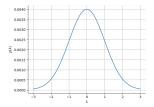
Our target is NSBH (precession effect is larger than BNS)

- $\bullet\,$ Time to merger $\sim 1\,{\rm day}$
 - ightarrow Doppler effect by Earth rotation
- Mass ratio = 10
 - $\rightarrow~$ The orbital plane is precessing

By considering those, parameter estimation should be improved. \checkmark

goal

Estimate how much EW is improved by Doppler & precession effect



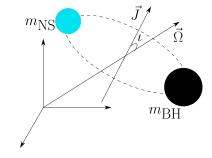
Method

Fisher analysis

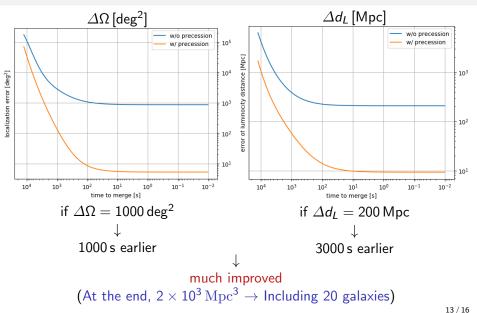
Assuming: The probability density function is Gaussian in the neighborhood of the true parameters $\{\lambda_i\}_i$

$$p(\{\lambda_i\}_i) \propto \exp\left[-\frac{1}{2}\Delta\lambda_i F_{ij}\Delta\lambda_j\right]$$
$$F_{ij} := \int_{f_{\min}}^{f_{\max}} \mathrm{d}f \, \frac{\partial h(f,\lambda)}{\partial\lambda_i} \frac{\partial h^*(f,\lambda)}{\partial\lambda_j}\Big|_{\lambda=\lambda_{\mathrm{true}}}$$
$$\sigma_{ij}^2 \ge F_{ij}^{-1} \text{ is known}$$
e.g. $\Delta\Omega \sim \sqrt{\det F_{ij}^{-1}}\Big|_{i,j=\theta,\phi}$

Method



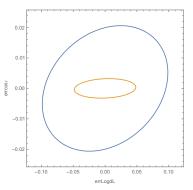
Result


Setting

200 sources are randomly sampled under

$$egin{aligned} heta_{s} \in [0,\pi) \ \phi_{s} \in [0,2\pi) \ \psi \in [0,2\pi) \ \cos \iota \in [-1,+1] \ ec{\mathcal{L}} ot ec{S} \end{aligned}$$

Einstein Telescope at Virgo



Why is the EW much improved?

$$\tilde{h}(f) \sim \left(\frac{1 + \cos^2 \iota}{2} F_+ + i \cos \iota F_{\times}\right) \frac{M_c^2}{d_L} (\pi M_c f)^{-7/6} \exp\left[-i \frac{3}{128} (\pi M_c f)^{-5/3}\right]$$

• if no precessing

- \rightarrow The amplitude is estimated
- $\rightarrow \ {\rm Since} \ \cos \iota \ {\rm is \ constant}, \\ \cos \iota \ {\rm degenerates \ with} \ d_L.$
- if precessing
 - $\rightarrow \cos \iota$ is varying
 - \rightarrow the degeneracy is broken

without/with precession

Method

Summary

- The constructions of third generation detectors are planed
- NSBH can be observed for $\sim 1\,{
 m day}$
- Doppler & precession effect can be considered
- We estimated the performance of Early Warning for the above setting
- The precession brakes the degeneracy between the luminosity distance & the inclination

 $\rightarrow\,$ Early Warning is much improved