Emergence of life in an inflationary universe

戸谷 友則 (TOTANI, Tomonori) Dept. Astronomy, Univ. Tokyo

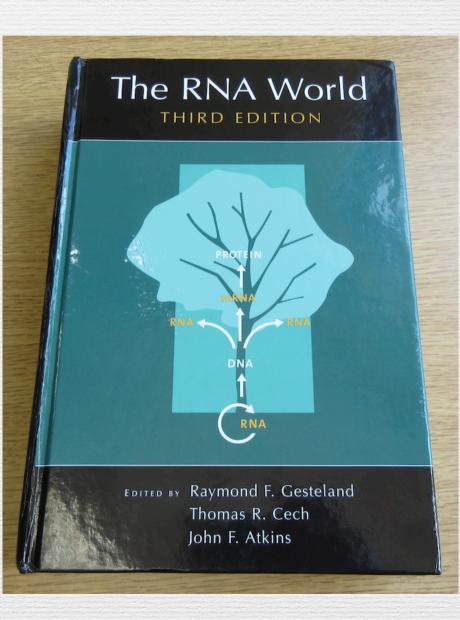
> RESCEU Summer School 2020 Reiwa 2 (2020) Aug. 17-19

How an astrophysicist started to think about the origin of life?

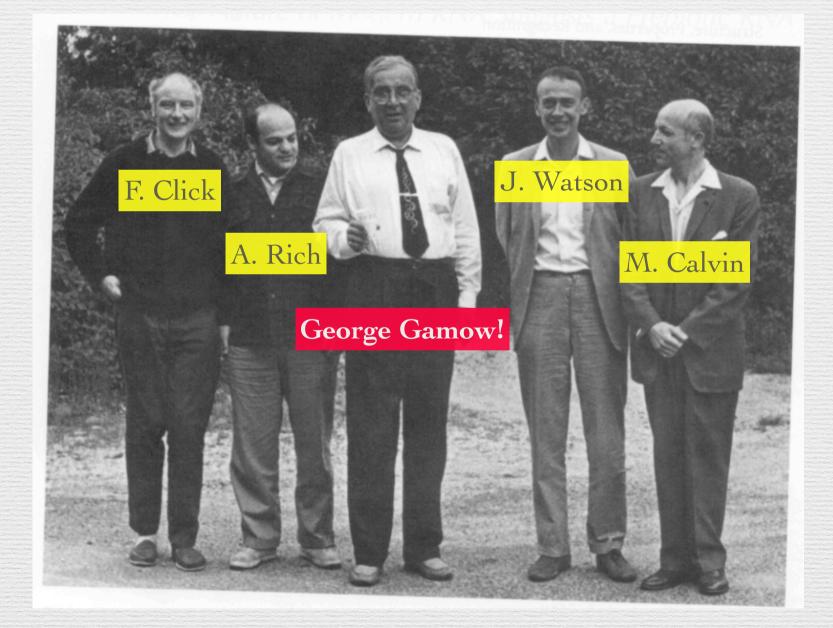
- Some people say...
 - Sometimes a senior scientist starts a crazy study...
 - When a physicist starts to study about life, it is the end of his/her carrier...
- Some famous people in astronomy/physics started to think about life
 - E. Schrodinger
 - F. Hoyle
 - ... and more?

■ナガチを動通し、原子 物理学の基礎をつくった 著者が追究した生命の本 質──分子生物学の生み の親となった20世紀の 名著。生物の現象ことに 遺伝のしくみと染色体行 動における物質の構造と

法則を物理学と化学で説明し、生物におけるその 意義を究明する。負のエントロビー論など今も熱 い議論の渦中にある科学者の本懐を示す古典。



An example of a cosmologist turned into a biologist


• One day, I wanted to read a chapter of a book "the RNA world (3rd edition, 2006)

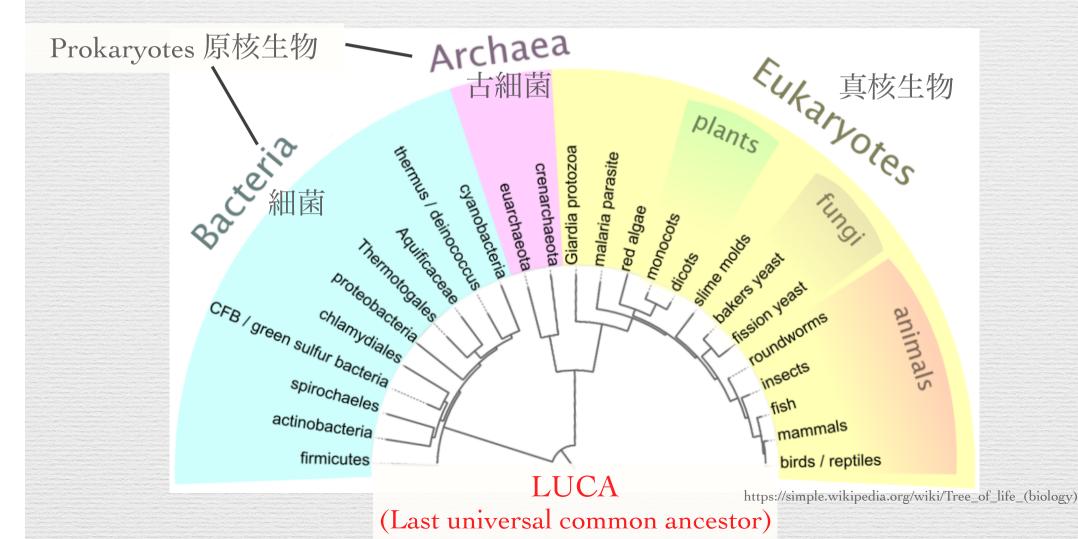
- Only in the library of School of Medicine in my university!
 - For the first time I visited the medicine library...

An example of a cosmologist turned into a biologist

On the first page of the book, there is a photo
Titled "the RNA Tie Club Members", taken in 1963

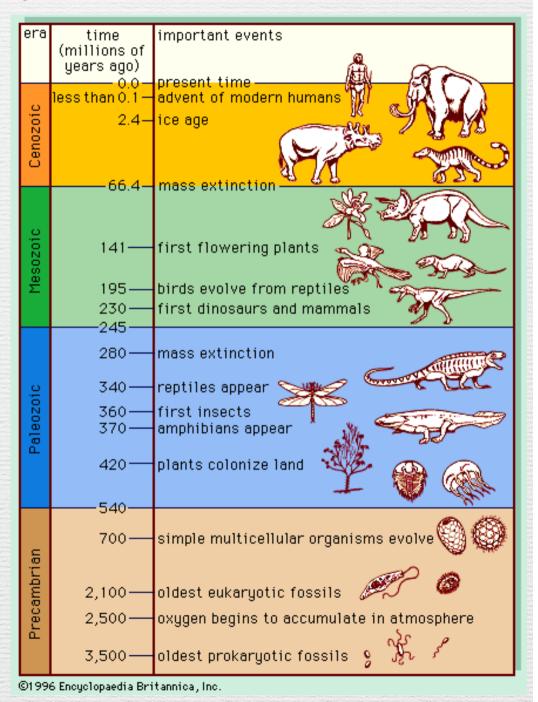
An example of a cosmologist turned into a biologist

- According to Wikipedia
 - Gamow & Watson co-founded the RNA Tie Club (1954)
 - Crick said that Gamow's suggestions helped him in his own thinking about the protein formation by DNA information
 - 3 nucleotides with 4 different base types (4³=64 combinations) code 20 different amino acids
 - Gamow pointed out: if the order of 3 nucleotides is irrelevant, the different combinations reduce to (4+3-1)!/3! = 20 = types of amino acids!
 - This was incorrect, but contributed to giving rise to models of "biological degeneracy"

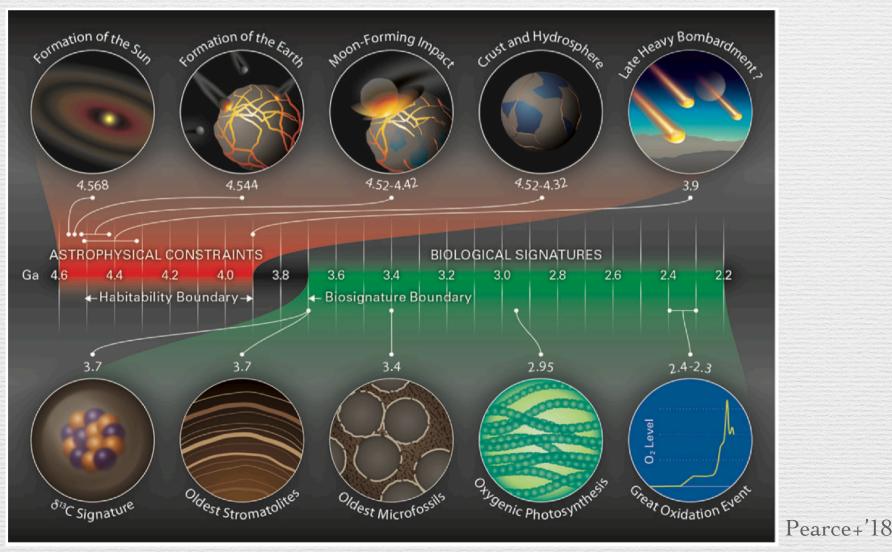

Clinical Tools, Inc.

The standard genetic code (codon)

					Second ba	se of	codon				
U		U	С		А		G				
		UUU	Phenylalanine phe Leucine leu	UCU	Serine ser	UAU	Tyrosine	UGU	Cysteine	U	
U		UUC		UCC		UAC	tyr	UGC	cys	С	
		UUA		UCA		UAA	STOP codon	UGA	STOP codon	А	
		UUG		UCG		UAG		UGG	Tryptonphan trp	G	
		CUU	Leucine Ieu	CCU	Proline pro	CAU	Histidine his Glutamine gin	CGU	Arginine arg	U	
С		CUC		CCC		CAC		CGC		С	
		CUA		CCA		CAA		CGA		А	
		CUG		CCG		CAG		CGG		G	pase
C		AUU	Isoleucine	ACU	Threonine	AAU	Asparagine asn	AGU	Serine ser	U	9
А		AUA		ACC		AAC		AGC		С	00001
			ACA	thr	AAA	Lysine	AGA	Arginine	А	-	
		AUG	Methionine met (start codon)	ACG		AAG	lys	AGG	arg	G	
G		GUU	C Valine A val	GCU	Alanine ala	GAU	Aspartic acid asp Glutamic acid glu	GGU	Glycine gly	U	
		GUC		GCC		GAC		GGC		С	
		GUA		GCA		GAA		GGA		А	
		GUG		GCG		GAG		GGG		G	


Evolutionary history of life on Earth

- All cellular life on Earth has evolved from the single last universal common ancestor (LUCA)
- No evidence for another independent abiogenesis event
 - "abiogenesis" = emergence of life from abiotic (=non-biotic) processes


Evolutionary history of life on Earth

- >3.5 Ga (Gyr ago)
 - The first life
 - 2.1 Ga
 - The oldest eukaryote fossils
- 0.7 Ga
 - Appearance of multicellular organisms
- 0.5 Ga
 - Increase of oxygen level
 - Plants colonize land
 - Diverse multicellular organisims

When the first life appeared on Earth?

- Older than 3.7 Ga from Fossil records / carbon isotope
- Appearance of the earliest crust & hydrosphere: 4.5 Ga (soon after the Earth formation)
- Life may be possible only after late heavy bombardment (3.9 Ga)
- The time taken for life to appear: 0.2-0.8 Ga (4-18% of the Earth current age)

Abiogenesis probability on a planet?

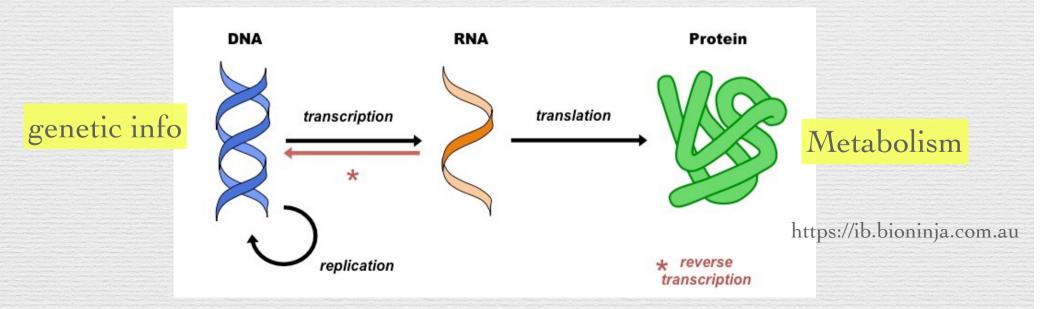
• The early emergence of life in the Earth history implies a high probability?

- (the only one) argument that favors a high probability
- An immediate counter argument: no evidence for multiple abiogenesis events

• No strong conclusions can be derived for the moment (Lineweaver+02; Spiegel+12)

- Early appearance may be just by chance (4-18% chance probability)
- Early Earth may have been more favorable environment for abiogenesis
 - e.g. higher geological activities, more hydrothermal vents, ...
- Anthropic effect: an intelligent life must appear before the end of the Earth habitability
 - Increase of solar luminosity may cause the end of habitability in 1 Gyr?

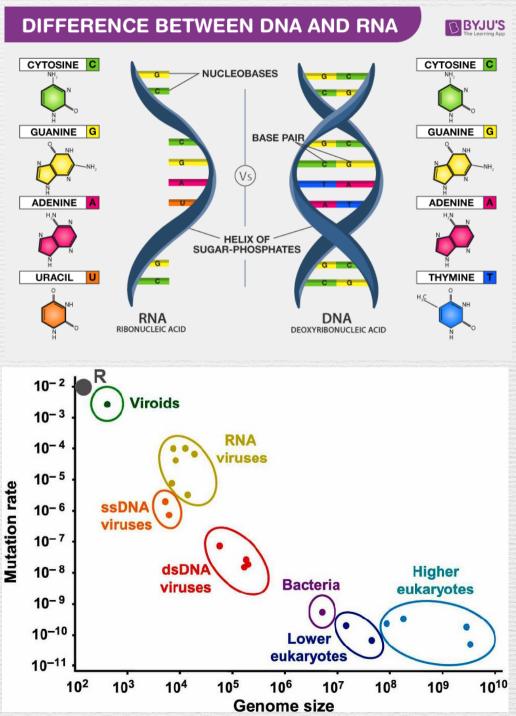
Arbitrarily small abiogenesis probability cannot be excluded


- We do not know any other life of a different origin in Earth or in the universe
- We will find ourselves on a planet where abiogenesis happened

What is life actually?

• Definition of life?

- The NASA Astrobiology Institute Definition of Life: "self-sustaining chemical system capable of Darwinian evolution."
- Essential aspects of life
 - Self-replication with genetic information
 - Metabolism (take energy from outside for necessary chemical reactions)
 - Compartmentalized by lipid membrane from outside as a cell


• The central dogma of the life on Earth

Genome in Life

- Genome size (in DNA length [base-pair])
 - Polychaos dubium (a sort of amoeba)
 6.7×10¹¹ (the biggest size in all organisms)
 - Human 3.0×10⁹
 - Bacteria/Archaea 1.1×10⁵ 1.6×10⁷
 - Virus $1759 2.5 \times 10^6$
 - Viroid 246
 - RNA polymerase ribozyme in in-vitro experiments ~100

Gago+'09; Ruiz-Mirazo+'14

How did the first life appear?

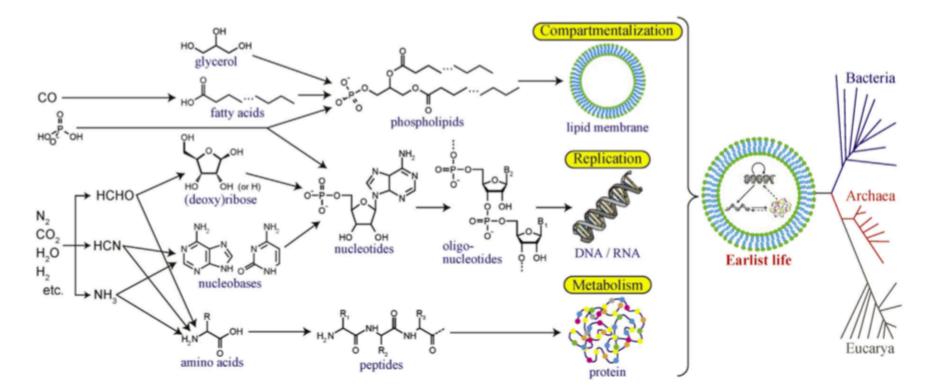
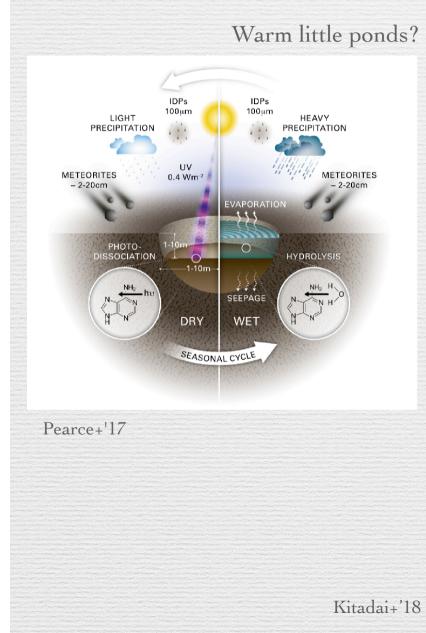
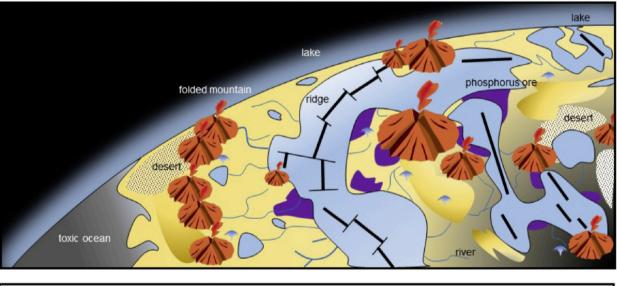



Figure 2. Structures, components, and abiotic synthetic pathways of bio-macromolecules operating three fundamental functions of life (replication, compartmentalization, and metabolism).



Possible sites of abiogenesis

Hydrothermal vents?

https://en.wikipedia.org/wiki/Hydrothermal_vent

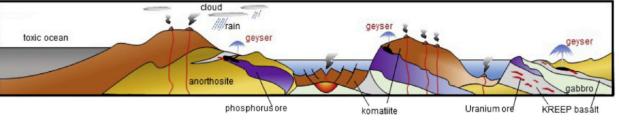
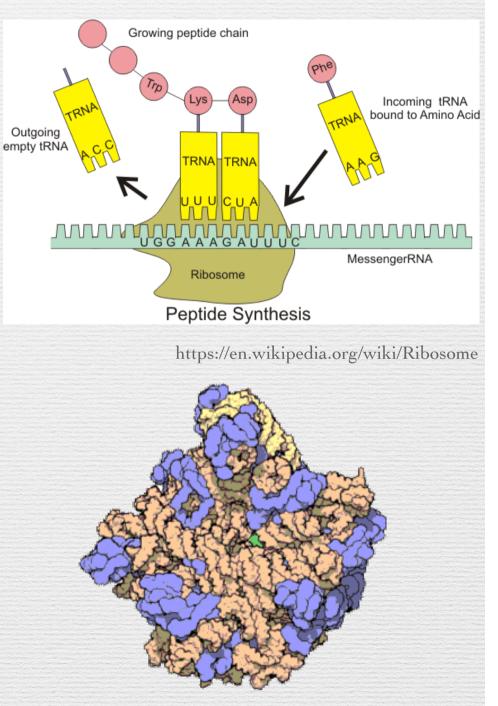
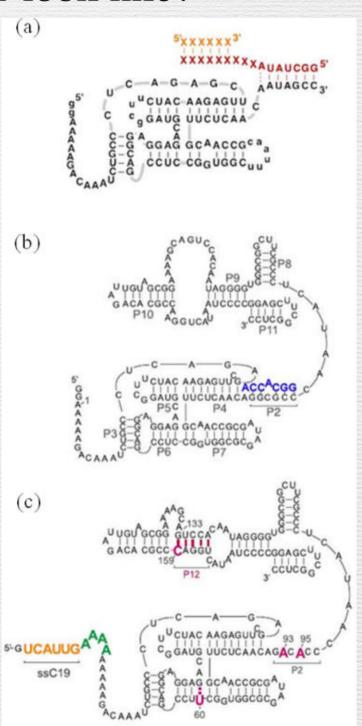



Figure 1. Schematic diagram of a Hadean surface environment proposed by Maruyama et al. (2013) and Santosh et al. (2017).

The RNA world hypothesis


- A chicken-and-egg problem:
 - Protein is assembled based on the genetic information coded in DNA
 - DNA needs protein for their self-replication
- DNA vs. proteins: which was the first?
 - A solution: RNA was the first!
- RNA can catalyze some biological reactions like protein enzymes — "ribozyme"
 - The central part of a ribosome (the machine producing protein from RNA) is made of RNA
- The RNA world hypothesis: self-replicating RNA polymerase ribozyme was the earliest form of life
 - It does not reject a pre-RNA world with different types of molecules
- The most popular hypothesis in the origin-of-life studies

What did the first RNA polymer look like?

Ruiz-Mirazo+'14

- The RNA world hypothesis does not give any explanation of the first self-replicating RNA polymer
- *In vitro* evolution experiments have produced ribozymes with template-dependent RNA polymerase activity
 - Typically 100-200 nt (nucleotides)
- How short can the first self-replicating RNA be? According to expert biologists (Szostak '93; Robertson+'12):
 - RNA shorter than 25-nt do not show a specified function
 - A reasonable hope of RNA replicase ribozyme with a length of 40-60 nt

The first key step to abiogenesis

• A polymer of RNA (or its precursor) longer than 40-100 nt needs to be produced abiotically, with a particular nucleotide sequence (genetic info) allowing a self-replicating activity

 Not just one, but a pair of identical RNA strand may be required

- One acts as a ribozyme, and the other as a template
- Then the required length would be twice longer

• The first big step for abiogenesis

- Generation of biological information as an ordered sequence from zero
- Statistically the biggest barrier (in my view)

• After that, the Darwinian evolution is triggered toward the first cell

- Encapsulation by membrane
- Incorporating protein and DNA

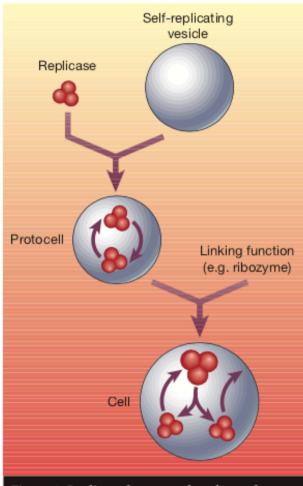
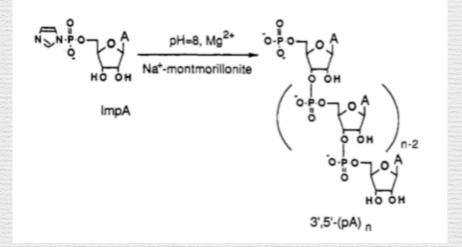



Figure 2 Outline of proposed pathway for synthesis of a cell. The first major synthetic intermediates are an RNA replicase and a selfreplicating vesicle. These are combined into a protocell, enabling rapid evolutionary optimization of the replicase. Addition of an RNA-coded linking function, such as a lipidsynthesizing ribozyme, completes the cellular structure. Szostak '01

How was the first active RNA built abiotically?

- RNA polymerization experiments
 - polymerization occurs by reactions of activated monomers
 - can be accelerated on catalyzer (e.g. clay mineral surface) (e.g. Ferris+'06)
 - consistent with statistical adding of monomers randomly
 - Yields rapidly decrease with polymer length, up to ~10 nt (Kawamura+'94, Cafferty+14)
 - Some reports reporting >30-nt polymer production remain controversial, possibly misidentifying polymers and aggregates
 - Huang+03, Costanzo+09, Burcar+13

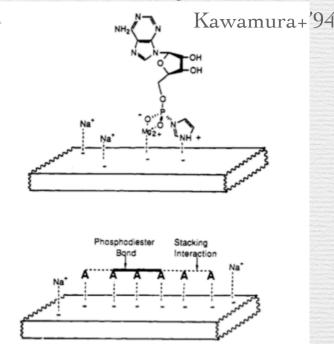
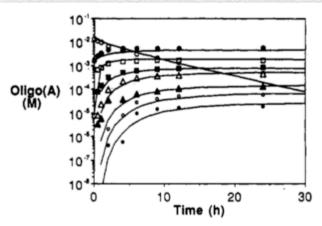
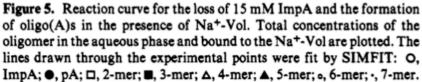
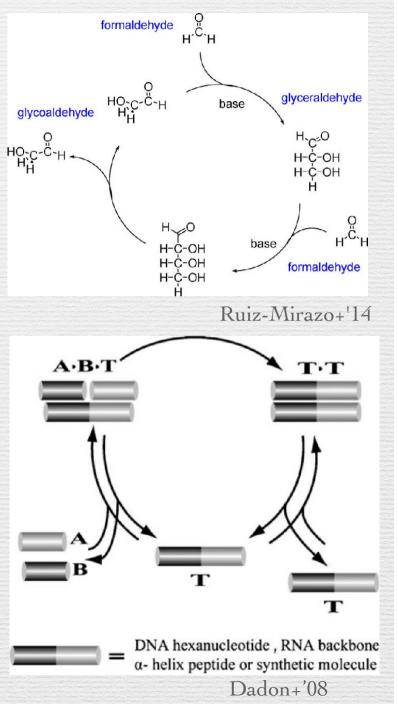




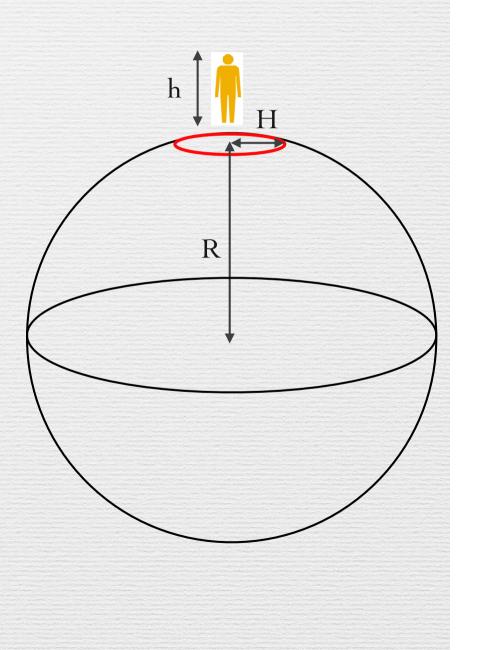
Figure 7. (A) Proposed binding of ImpA to negative sites on the surface of Na⁺-Vol. (B) Proposed model for elongation of $(pA)_3$ by reaction with ImpA at the negative sites on the surface of Na⁺-Vol: $(pA)_3 = \overline{A A A}$ and ImpA = A.


R

More efficient processes to the first RNA?

- More efficient processes than randomly adding monomers?
 - Cyclic (auto- or cross-catalytic) reaction network has been considered in the context of abiogenesis (Coveney+'12; Hordijk+'18)
 - Mostly theoretical, but some experimental demonstrations for basic reactions
 - e.g. template-directed ligation of short oligomer fragments
 - No experimental proof for such reactions actually working at the abiogenesis
- Such a reaction network may be useful for self-replication of necessary molecules (building blocks), but unlikely useful for template-independent polymerization of the first long polymer at the starting point of abiogenesis
- Conservatively, the simplest polymerization by adding monomers is the only one path that certainly exists

How small can the abiogenesis probability be?


- Abiogenesis by statistically adding monomers looks extremely unlikely
 - Can a monkey hitting a keyboard at random type a complete work of Shakespeare?
 - "The probability of abiogenesis is comparable to the chance that a tornado sweeping through a junkyard might assemble a Boeing 747" (F. Hoyle)

- In literature, a small abiogenesis probability is often considered as that in the whole Galaxy, or in the observable universe (13.8 billion light year radius including 10²² Sunlike stars and 10¹¹ galaxies)
- From a viewpoint of cosmology, considering abiogenesis probability in the observable universe is almost nonsense!
 - The size of the observable universe is determined by the light travel distance since the Big Bang
 - "the cosmic horizon" in which we can directly see

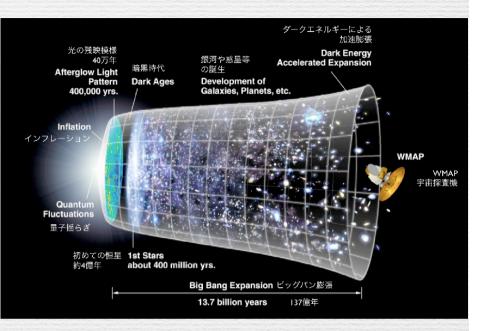
The horizon on the Earth surface

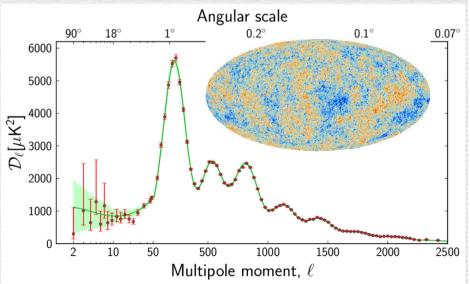
- Horizon length for a person (height h) is:
 - H = $[2 h (R + h)]^{1/2}$
 - R=Earth radius= 6371 km
 - H ~ 5 km for a h=1.7m person
- Suppose you are considering on the abiogenesis probability on Earth. How do you feel if somebody considers about the probability within one's horizon
- "abiogenesis probability in the observable universe" is similar to this
- Then, how large is the real physical universe?

The inflationary universe

• The observable universe now is

- extremely homogeneous
- spatially flat


far beyond the horizon at the early universe


• The widely accepted solution: cosmic inflation

- The universe experienced an exponential expansion in the early universe (typically t < 10^{-37} s, kT > 10^{16} GeV)
- Such an expansion provides a flat and homogeneous universe beyond the horizon
- The minimum expansion factor required:
 - $exp(N_i)$ with $N_i > 60$
 - 3×10^{-27} cm $\rightarrow \sim 1$ cm (our observable universe at the end of inflation)

• Further observational support:

- Scale-invariant matter density fluctuations in the universe (power spectrum $\propto 1/\lambda$)
- Confirmed at a high precision by the cosmic microwave background radiation

How large is the inflationary universe?

- The minimum requirement to solve the homogeneity/flatness problems:
 - $N_i > N_{i,min} \sim 60$
 - No observational upper bound on N_i
 - $N_i \propto \text{inflation duration}$
- If you change some model parameters of inflation, the duration easily changes, say, by a factor of a few
- \bullet It would be a fine tuning if the actual N_i is very close to $N_{i,\text{min}}$
 - Rather, we expect $(N_i N_{i,min}) > N_{i,min}$
- If inflation duration is twice, three, and four times larger than $N_{i,min} \sim 60$:
 - The physical size of the universe is exp(60), exp(120), and exp(180) times larger than the observable universe now
 - 10^{78} , 10^{156} , and 10^{234} times larger in volume
 - contains 10¹⁰⁰, 10¹⁷⁸, 10²⁵⁶ Sun-like stars

• If abiogenesis occurs many times in an inflationary universe, it is consistent with our existence even if the abiogenesis probability is negligibly small in the observable universe (10²² stars)

This work T. Totani 2020, Scientific Reports 10, 1671

- Examine whether life can emerge by the most conservative process (random reactions of monomers) in the total volume of an inflationary universe
 - Derive a quantitative relation between:
 - The minimum length of RNA (or its precursor) required to trigger an abiogenesis event
 - The universe size necessary to expect the formation of such a long RNA by random adding of monomers
- Koonin (2008) considered abiogenesis in the universe assuming "the eternal inflation scenario"
 - In this scenario, multi-verses are produced by repeated inflation events
 - Predicts a infinite volume of the universe, thus abiogenesis is possible with an infinitely small probability
 - Quantitative discussion impossible
 - Eternal inflation is difficult to confirm observationally
- This work assumes the minimal inflation to explain observations:
 - A homogeneous region created by a single inflation event, including our observable universe
 - Thus a quantitative discussion becomes possible

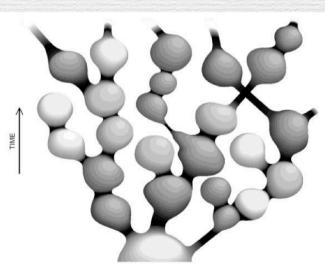


Fig. 4 - Global structure of the chaotic self-replicating multiverse. The different gray hues symbolize "mutations" in the physics laws in the domains, as compared to the parent island universes. *Adapted from Linde (2014; 2015)*

Poissonian RNA polymerization

• Suppose a cycle of polymerization, where activated monomers are injected into a reaction site

Polymerization by adding monomers

- Basic equations for the abundance of l-length RNA, x_l
- κ : the reaction probability per unit time
- solving with a condition of $x_1 \ll x_{l+1}$, abundance at a time t is:

• p_r = к t

- can also be derived from the Poisson distribution
- We only consider the regime of $p_r = \kappa t < 1$
 - Beyond t > $1/\kappa$, a significant amount of activated monomers would be lost, so the above simple formula does not hold

• $p_r \sim 1$ can be achieved if polymerization in a cycle continues up to t $\sim 1/\kappa$

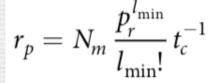
- Experiments on clay surface found $p_r \sim 1$ is achieved with $\kappa \sim (hour)^{-1}$
- The reaction rate $\kappa \propto$ (monomer concentration)
 - High monomer concentration necessary. Dry-wet cycle in warm little ponds?

$$\dot{x}_{l+1} = \kappa \ x_l - \kappa \ x_{l+1}$$

$$x_l = \frac{p_r^{l-1}}{(l-1)!} x_1$$

Equation of abiogenesis probability

• The expected number of abiogenesis events in a region including N* stars


$$N_{\rm life} = N_* f_{pl} t_d r_p P_{ac} P_{ev}$$

• f_{pl} : mean number of habitable planets per star

• t_d : duration of polymerization cycles continue

• r_p : production rate of a l_{min} -length RNA polymer on a planet

- N_m: the number of activated monomers on a planet
- t_c: time interval between cycles

- P_{ac} : probability of active nucleobase sequences among all sequences
 - N_{ac} : number of active sequences, N_{nb} (=4): number of nucleobase types

$$P_{ac} = \frac{N_{ac}}{N_{nb}^{l_{\min}}} = \frac{1}{N_{nb}^{l_{\min}-\Delta l}} \qquad N_{ac} \equiv N_{nb}^{\Delta l}$$

- N_{ac} is uncertain, but perhaps 10⁴ sequences among all sequences of 40-mer (4⁴⁰ ~ 10²⁴ sequences), i.e. $\Delta l=6.6$ for $l_{min}=40$ (Robertson & Joyce '12)
- Assume $\Delta l = 0$ in the baseline model

• P_{ev} : probability that an active RNA polymer evolves to life (=1)

• very uncertain, can be much smaller

lg N* vs. l_{min}

• Requiring Nlife = 1, and taking a logarithm

$$2.3 \lg N_* = \ln(l_{\min}!) - l_{\min} \ln p_r + (l_{\min} - \Delta l) \ln N_{nb} - \ln C$$

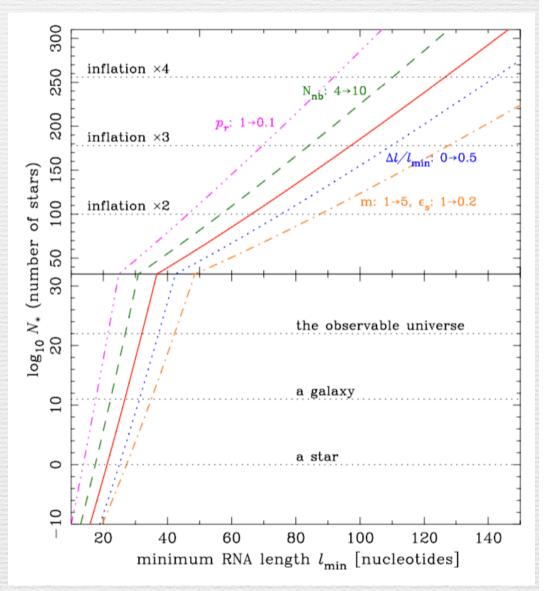
 $C \equiv f_{pl} N_m t_d t_c^{-1} P_{ev}$

- Non-logarithmic main terms: lgN* (${}^{\varpropto}N_i)$ and l_{min}

- Other parameters appear only logarithmically, though some of them are very uncertain
 - C is uncertain probably by more than 10 orders of magnitude
- Baseline estimate of C:
 - $f_{pl} = 0.1$ (from exoplanet observations)
 - $t_d = 0.5$ Gyr (time scale from Earth formation to abiogenesis)
 - $t_c = 1$ yr (assuming a seasonable cycle, 1 day may also be good for day-night cycle)
 - $N_m = 10^{25}$ (~ 1 kg)(very uncertain, from a model of nucleobase delivery by meteorites)
 - $N_m \sim 10^{38}$ for the total biomass on the present Earth
 - $\ln C = 75.3$

Results

• $l_{min} vs lgN *$


- $l_{min} = 21$ for lgN *= 0 (a star)
- $l_{min} = 27$ for lgN * = 11 (a galaxy)
- l_{min} = 31 for lgN * = 22 (the observable universe)
- c.f. $l_{min} > 40-100$ required for a biological self-replicating activity
- lgN *= 39 for $l_{min} = 40$

• Inflationary universe:

- $l_{min} = 66, 97, 127$ for lgN * = 100, 178, 256
 - (×2, ×3, ×4 longer inflation than the minimum)

• lgN* changes by 10 when C is changed by $\times 10^{10}$

- Not a large effect especially in the large limit of l_{min} and $lgN\,\ast$

Discussion & Conclusions (1/2)

- A long (>40-100nt) and biologically active RNA can be produced in the total volume of an inflationary universe only by random reactions of adding monomers
 - A (currently the only) solution to the initial abiotic polymerization problem about the origin of life
 - Life can emerge in the framework of science, and we do not have to consider something beyond science (e.g. intelligent design)
- The expected number of abiogenesis events is small even in the observable universe, but it does not contradict with available observational facts
 - The observable universe is just a tiny part (likely less than 1/10⁷⁸) of the real universe size
 - No strong reason to expect more than one abiogenesis events in the observable universe
 - Giving an explanation to the Fermi's paradox
- Implication for the homochirality of life:
 - Life uses only L-chiral (left-handed) amino acids and D-chiral (right-handed) sugers in DNA/ RNA
 - The $l_{min} \ vs \ lgN*$ statistics does not significantly change when N_{nb} (base types) increased by $\times 2$
 - If homochirality is a necessary condition for a biological activity, simply a bit larger volume of inflationary universe is required to expect an abiogenesis event

Discussion & Conclusions (2/2)

- Implications for extraterrestrial life search:
 - I regret that, but I bet on negative results in future searches in the Solar system or nearby exoplanets!
 - If discovered, I would first consider the possibility of interplanetary/interstellar traveling of microorganisms (i.e., the common origin with the life on Earth)
 - Caveat: a much more efficient process of RNA polymerization may change this conclusion, but in my view, no such convincing process is known yet
 - ... and we do not need such a hypothetical process to explain the origin of life
- Ultimate mystery of life?
 - I assumed that life can emerge if a sufficiently long RNA polymer is abiotically assembled
 - This may be trivial under the physical laws that we know, because we know the phenomenon of life (esp. ribozyme) on Earth
 - But does it easily occur when the physical laws are arbitrarily made?
 - This may be the ultimate mystery about life, which is not answered at all by this work