

Yuta Tarumi with Naoki Yoshida, Takuma Suda, Shigeki Inoue, and Auriga team

What are / Why UFDs?

https://en.wikipedia.org/wiki/Local_Group

- UFDs are small (< 10⁵ Lsun) satellite galaxies.
- * UFDs are old.
 - * Good probe for high-z galaxy.
- * Stochasticity: "0 or 1 r-process".
- Small but important !

Why Barium?

- A Neutron-capture element that is Easy to observe.
 - * Ba is detected in 16/16 UFDs.
 - A solid theoretical framework: r/s process
- Caveat: ~10% from r-process, ~90% from s-process.
 - We need to take into account the contribution from both r-process and s-process

Rarity of r-process

Normalized to solar

- Only 3/16 UFDs have Eu detection.
- $\bullet \rightarrow$ r-process event should be race and trotatic.

1.2

- * What is the origin of Ba in "no r-process" UFDs?
 - UFDs quench within the first 1 Gyr, weaker AGB
 contribution than Milky-Way
 - * Can AGB stars contribute to the chemical enrichment of UFDs?

Method: simulation

- Code: AREPO
- Auriga galaxy formation model
- Ba only from AGB stars
- Prepare two UFD progenitors with different star formation history: "large" (2×10⁴ Msun) and "small" (3×10³ Msun).

Results: [Ba/Fe] value

$$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$$

Normalized to solar

- * [Ba/Fe] is too low.
- * Keep forming stars for a long time?
- However, the star formation duration of "Large UFD" is at the longest end of UFDs.

Results: [Ba/Fe] scatter

 $[X/Y] = \log_{10} \left| \frac{N_X}{N_V} \right| + C$ Normalized to solar

- If star formation duration is long (> ~500Myr), [Ba/Fe] scatter would be too large.
- * The standard model fails to reproduce the Ba abundance.
- Possible solutions are...
 - * Modify IMF (skipped).
 - Enhance Ba production in short timescale and bring [Ba/Fe] up at the left.

Results: additional Ba source

 $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- Adding 3×10⁻¹⁰ Msun of Ba from massive stars per 1 Msun of stars formed
- [Ba/Fe] roughly matches while keeping [Ba/Fe] scatter small.

Discussion1: What is the origin of Ba in UFDs? $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- * super-AGB stars?
 - Even with recent yield (Doherty+17) Ba abundance is not reproduced.
- * Rotating massive stars?
 - The model uncertainty is still quite large and may reproduce Ba abundance. Further observations (such as the rotation of OB stars) can constrain better.
- * Halo stars are mostly r-process dominant. However, super-AGB and rotating massive stars are s-process.
- * r-process or s-process?: we need observation!

Discussion2: Diversity among UFDs $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- * What is the origin of the diversity of [Ba/Fe] among UFDs?
- * Possible factors: 1. yield, 2. IMF, 3. SFH, assuming well-sampling.
- Since [Fe/H] is similar 1 and 2. shout the similar.
- SFH is important if delayed source (like AGB) is important, but AGB has shown to be subdommant, and there's no other candidates

Gru II

Her

Hor I

Leo IV

* Rare event??

Boo II

Com Ber

• Boo l

Halo

$[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Conclusion: We need something.

- * Ba cannot be explained only by AGB stars.
- Possible solutions are... *
 - Tweaking IMF.
 - Some other Ba source.
 - It should produce 3×10⁻¹⁰ Msun of Ba from 1 Msun of stars formed.

Normalized to solar

dwarf & UFD list

Simon+19

Dwarf	$M_{ m V}$	$egin{array}{c} R_{1/2} \ (m pc) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s}^{-1})$	$\sigma \ ({\rm km~s^{-1}})$	[Fe/H]	$\sigma_{ m [Fe/H]}$	Dwarf	$M_{ m V}$	$\begin{array}{c} R_{1/2} \\ (\mathrm{pc}) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s^{-1}})$	$\sigma \ ({ m km~s^{-1}})$	[Fe/H]	$\sigma_{ m [Fe/H]}$
Tucana IV	$-3.50^{+0.28}_{-0.28}$	127^{+26}_{-22}	$48.0^{+4.0}_{-4.0}$					Leo I	$-11.78^{+0.28}_{-0.28}$	270^{+17}_{-16}	$254.0^{+16.0}_{-15.0}$	$282.9^{+0.5}_{-0.5}$	$9.2^{+0.4}_{-0.4}$	$-1.48^{+0.02}_{-0.01}$	$0.26^{+0.01}_{-0.01}$
Sculptor	$-10.82^{+0.14}_{-0.14}$	279^{+16}_{-16}	$86.0^{+5.0}_{-5.0}$	$111.4^{+0.1}_{-0.1}$	$9.2^{+1.1}_{-1.1}$	$-1.73^{+0.03}_{-0.02}$	$0.44^{+0.02}_{-0.02}$	Sextans	$-8.94^{+0.06}_{-0.06}$	456^{+15}_{-15}	$95.0^{+3.0}_{-3.0}$	$224.3_{-0.1}^{+0.1}$	$7.9^{+1.3}_{-1.3}$	$-1.97\substack{+0.04\\-0.04}$	$0.38^{+0.03}_{-0.03}$
Cetus II	$0.00^{+0.68}_{-0.68}$	17^{+9}_{-5}	$30.0^{+3.0}_{-3.0}$					Ursa Major I	$-5.13^{+0.38}_{-0.38}$	295^{+28}_{-28}	$97.3^{+6.0}_{-5.7}$	$-55.3^{+1.4}_{-1.4}$	$7.0^{+1.0}_{-1.0}$	$-2.16^{+0.11}_{-0.13}$	$0.62^{+0.10}_{-0.08}$
Cetus III	$-2.45_{-0.56}^{+0.57}$	90^{+32}_{-14}	$251.0^{+24.0}_{-11.0}$					Willman 1	$-2.90^{+0.74}_{-0.74}$	33^{+8}_{-8}	$45.0^{+10.0}_{-10.0}$	$-14.1^{+1.0}_{-1.0}$	$4.0^{+0.8}_{-0.8}$	$-2.19^{+0.08}_{-0.08}$	
Triangulum II	$-1.60^{+0.76}_{-0.76}$	16^{+4}_{-4}	$28.4^{+1.6}_{-1.6}$	$-381.7^{+1.1}_{-1.1}$	$< 3.4^{\rm c}$	$-2.24^{+0.05}_{-0.05}$	$0.53^{+0.12}_{-0.38}$	Leo II	$-9.74_{-0.04}^{+0.04}$	171^{+10}_{-10}	$233.0^{+14.0}_{-14.0}$	$78.3^{+0.6}_{-0.6}$	$7.4^{+0.4}_{-0.4}$	$-1.68^{+0.02}_{-0.03}$	$0.34_{-0.02}^{+0.02}$
Segue 2	$-1.98^{+0.88}_{-0.88}$	40^{+4}_{-4}	$37.0^{+3.0}_{-3.0}$	$-40.2^{+0.9}_{-0.9}$	$< 2.2^{c}$	$-2.14^{+0.16}_{-0.15}$	$0.39^{+0.12}_{-0.13}$	Leo V	$-4.29^{+0.36}_{-0.36}$	49^{+16}_{-16}	$169.0^{+4.0}_{-4.0}$	$170.9^{+2.1}_{-1.9}$	$2.3^{+3.2}_{-1.6}$	$-2.48^{+0.21}_{-0.21}$	$0.47^{+0.23}_{-0.13}$
DESJ0225+0304	$-1.10^{+0.50}_{-0.30}$	19^{+9}_{-5}	$23.8^{+0.7}_{-0.5}$					Leo IV	$-4.99^{+0.26}_{-0.26}$	114^{+13}_{-13}	$154.0^{+5.0}_{-5.0}$	$132.3^{+1.4}_{-1.4}$	$3.3^{+1.7}_{-1.7}$	$-2.29^{+0.19}_{-0.22}$	$0.56^{+0.19}_{-0.14}$
Hydrus I	$-4.71^{+0.08}_{-0.08}$	53^{+4}_{-4}	$27.6^{+0.5}_{-0.5}$	$80.4_{-0.6}^{+0.6}$	$2.7\substack{+0.5 \\ -0.4}$	$-2.52\substack{+0.09\\-0.09}$	$0.41^{+0.08}_{-0.08}$	Crater II	$-8.20^{+0.10}_{-0.10}$	1066^{+86}_{-86}	$117.5^{+1.1}_{-1.1}$	$87.5^{+0.4}_{-0.4}$	$2.7^{+0.3}_{-0.3}$	$-1.98^{+0.10}_{-0.10}$	$0.22^{+0.04}_{-0.03}$
Fornax	$-13.34_{-0.14}^{+0.14}$	792^{+18}_{-18}	$139.0^{+3.0}_{-3.0}$	$55.2^{+0.1}_{-0.1}$	$11.7^{+0.9}_{-0.9}$	$-1.07\substack{+0.02\\-0.01}$	$0.27\substack{+0.01\\-0.01}$	Virgo I	$-0.80^{+0.90}_{-0.90}$	38^{+12}_{-11}	$87.0^{+13.0}_{-8.0}$				
Horologium I	$-3.76^{+0.56}_{-0.56}$	40^{+10}_{-9}	$87.0^{+13.0}_{-11.0}$	$112.8^{+2.5}_{-2.6}$	$4.9^{+2.8}_{-0.9}$	$-2.76^{+0.10}_{-0.10}$	$0.17\substack{+0.20\\-0.03}$	Hydra II	$-4.86^{+0.37}_{-0.37}$	67^{+13}_{-13}	$151.0^{+8.0}_{-7.0}$	$303.1^{+1.4}_{-1.4}$	$< 3.6^{c}$	$-2.02\substack{+0.08\\-0.08}$	$0.40^{+0.48}_{-0.26}$
Horologium II	$-1.56^{+1.02}_{-1.02}$	44^{+15}_{-14}	$78.0^{+8.0}_{-7.0}$					Coma Berenices	$-4.28^{+0.25}_{-0.25}$	69^{+5}_{-4}	$42.0^{+1.6}_{-1.5}$	$98.1^{+0.9}_{-0.9}$	$4.6^{+0.8}_{-0.8}$	$-2.43^{+0.11}_{-0.11}$	$0.46^{+0.09}_{-0.08}$
Reticulum II	$-3.99^{+0.38}_{-0.38}$	51^{+3}_{-3}	$31.6^{+1.5}_{-1.4}$	$62.8^{+0.5}_{-0.5}$	$3.3^{+0.7}_{-0.7}$	$-2.65^{+0.07}_{-0.07}$	$0.28^{+0.09}_{-0.09}$	Canes Venatici II	$-5.17^{+0.32}_{-0.32}$	71^{+11}_{-11}	$160.0^{+4.0}_{-4.0}$	$-128.9^{+1.2}_{-1.2}$	$4.6^{+1.0}_{-1.0}$	$-2.35^{+0.16}_{-0.19}$	$0.57^{+0.15}_{-0.12}$
Eridanus II	$-7.10\substack{+0.30\\-0.30}$	246^{+17}_{-17}	$366.0^{+17.0}_{-17.0}$	$75.6^{+1.3}_{-1.3}$	$6.9^{+1.2}_{-0.9}$	$-2.38^{+0.13}_{-0.13}$	$0.47^{+0.12}_{-0.09}$	Canes Venatici I	$-8.73^{+0.06}_{-0.06}$	437^{+18}_{-18}	$211.0^{+6.0}_{-6.0}$	$30.9^{+0.6}_{-0.6}$	$7.6^{+0.4}_{-0.4}$	$-1.91\substack{+0.04\\-0.04}$	$0.39^{+0.03}_{-0.02}$
Reticulum III	$-3.30^{+0.29}_{-0.29}$	64^{+26}_{-23}	$92.0^{+13.0}_{-13.0}$					Boötes II	$-2.94^{+0.74}_{-0.75}$	39^{+5}_{-5}	$42.0^{+1.0}_{-1.0}$	$-117.0^{+5.2}_{-5.2}$	$10.5^{+7.4}_{-7.4}$	$-2.79^{+0.06}_{-0.10}$	$< 0.35^{c}$
Pictor I	$-3.67^{+0.60}_{-0.60}$	32^{+15}_{-15}	$126.0^{+19.0}_{-16.0}$					Boötes I	$-6.02^{+0.25}_{-0.25}$	191^{+8}_{-8}	$66.0^{+2.0}_{-2.0}$	$101.8_{-0.7}^{+0.7}$	$4.6^{+0.8}_{-0.6}$	$-2.35_{-0.08}^{+0.09}$	$0.44^{+0.07}_{-0.06}$
Columba I	$-4.20^{+0.20}_{-0.20}$	117^{+12}_{-12}	$183.0^{+10.0}_{-10.0}$					Ursa Minor	$-9.03\substack{+0.05\\-0.05}$	405^{+21}_{-21}	$76.0^{+4.0}_{-4.0}$	$-247.2_{-0.8}^{+0.8}$	$9.5^{+1.2}_{-1.2}$	$-2.12^{+0.03}_{-0.02}$	$0.33^{+0.02}_{-0.03}$
Carina	$-9.45_{-0.05}^{+0.05}$	311^{+15}_{-15}	$106.0^{+5.0}_{-5.0}$	$222.9^{+0.1}_{-0.1}$	$6.6^{+1.2}_{-1.2}$	$-1.80^{+0.02}_{-0.02}$	$0.24^{\rm d}$	Draco II	$-0.80^{+0.40}_{-1.00}$	19^{+4}_{-3}	$21.5^{+0.4}_{-0.4}$	$-342.5^{+1.1}_{-1.2}$	$< 5.9^{c}$	$-2.70^{+0.10}_{-0.10}$	$< 0.24^{\rm c}$
Pictor II	$-3.20^{+0.40}_{-0.50}$	47^{+20}_{-13}	$45.0^{+5.0}_{-4.0}$					Hercules	$-5.83^{+0.17}_{-0.17}$	216^{+20}_{-20}	$132.0^{+6.0}_{-6.0}$	$45.0^{+1.1}_{-1.1}$	$5.1^{+0.9}_{-0.9}$	$-2.47^{+0.13}_{-0.12}$	$0.47^{+0.11}_{-0.08}$
Carina II	$-4.50^{+0.10}_{-0.10}$	92^{+8}_{-8}	$36.2^{+0.6}_{-0.6}$	$477.2^{+1.2}_{-1.2}$	$3.4^{+1.2}_{-0.8}$	$-2.44^{+0.09}_{-0.09}$	$0.22^{+0.10}_{-0.07}$	Draco	$-8.88^{+0.05}_{-0.05}$	231^{+17}_{-17}	$82.0^{+6.0}_{-6.0}$	$-290.7^{+0.7}_{-0.8}$	$9.1^{+1.2}_{-1.2}$	$-2.00^{+0.02}_{-0.02}$	$0.34^{+0.02}_{-0.02}$
Carina III	$-2.40^{+0.20}_{-0.20}$	30^{+8}_{-8}	$27.8^{+0.6}_{-0.6}$	$284.6^{+3.4}_{-3.1}$	$5.6^{+4.3}_{-2.1}$			Sagittarius	$-13.50^{+0.15}_{-0.15}$	2662^{+193}_{-193}	$26.7^{+1.3}_{-1.3}$	$139.4_{-0.6}^{+0.6}$	$9.6^{+0.4}_{-0.4}$	$-0.53^{+0.03}_{-0.02}$	$0.17^{+0.02}_{-0.02}$
Ursa Major II	$-4.43^{+0.26}_{-0.26}$	139^{+9}_{-9}	$34.7^{+2.0}_{-1.9}$	$-116.5^{+1.9}_{-1.9}$	$5.6^{+1.4}_{-1.4}$	$-2.23^{+0.21}_{-0.24}$	$0.67^{+0.20}_{-0.15}$	Sagittarius II	$-5.20^{+0.10}_{-0.10}$	33^{+2}_{-2}	$70.1^{+2.3}_{-2.3}$				
Leo T	$-8.00^{\rm e}$	118^{+11}_{-11}	$409.0^{+29.0}_{-27.0}$	$38.1^{+2.0}_{-2.0}$	$7.5^{+1.6}_{-1.6}$	$-1.91^{+0.12}_{-0.14}$	$0.43^{+0.13}_{-0.09}$	Indus II	$-4.30^{+0.19}_{-0.19}$	181^{+70}_{-64}	$214.0^{+16.0}_{-16.0}$				
Segue 1	$-1.30^{+0.73}_{-0.73}$	24^{+4}_{-4}	$23.0^{+2.0}_{-2.0}$	$208.5^{+0.9}_{-0.9}$	$3.7^{+1.4}_{-1.1}$	$-2.71_{-0.39}^{+0.45}$	$0.95\substack{+0.42\\-0.26}$	Grus II	$-3.90^{+0.22}_{-0.22}$	93^{+16}_{-12}	$53.0^{+5.0}_{-5.0}$				

Sun:	Mv	=	4.8

100 Lsun = -0.2

 10^4 Lsun = -5.2

 10^5 Lsun = -7.7

Dwarf	$M_{ m V}$	$egin{array}{c} R_{1/2} \ (m pc) \end{array}$	Distance (kpc)	$v_{ m hel} \ ({ m km~s^{-1}})$	σ (km s ⁻¹)	[Fe/H]	$\sigma_{ m [Fe/H]}$
Pegasus III Aquarius II Tucana II Grus I Pisces II Tucana V Phoenix II	$\begin{array}{r} -4.10\substack{+0.50\\-0.50}\\ -4.36\substack{+0.14\\-0.14}\\ -3.90\substack{+0.20\\-0.20}\\ -3.47\substack{+0.59\\-0.59}\\ -4.23\substack{+0.38\\-0.38}\\ -1.60\substack{+0.49\\-0.49}\\ -2.70\substack{+0.40\\-0.40}\end{array}$	$\begin{array}{r} 78^{+31}_{-25} \\ 160^{+26}_{-26} \\ 121^{+35}_{-35} \\ 28^{+23}_{-23} \\ 60^{+10}_{-10} \\ 16^{+5}_{-5} \\ 37^{+8}_{-8} \end{array}$	$\begin{array}{c} 205.0^{+20.0}_{-20.0}\\ 107.9^{+3.3}_{-3.3}\\ 58.0^{+8.0}_{-8.0}\\ 120.0^{+12.0}_{-11.0}\\ 183.0^{+15.0}_{-15.0}\\ 55.0^{+9.0}_{-9.0}\\ 84.3^{+4.0}_{-4.0} \end{array}$	$\begin{array}{r} -222.9^{+2.6}_{-2.6}\\ -71.1^{+2.5}_{-2.5}\\ -129.1^{+3.5}_{-3.5}\\ -140.5^{+2.4}_{-1.6}\\ -226.5^{+2.7}_{-2.7}\end{array}$	$5.4_{-2.5}^{+3.0}$ $5.4_{-0.9}^{+3.4}$ $8.6_{-2.7}^{+4.4}$ $2.9_{-1.0}^{+2.1}$ $5.4_{-2.4}^{+3.6}$	$\begin{array}{r} -2.40^{+0.15}_{-0.15}\\ -2.30^{+0.50}_{-0.50}\\ -2.90^{+0.15}_{-0.16}\\ -1.42^{+0.55}_{-0.42}\\ -2.45^{+0.07}_{-0.07}\end{array}$	$\begin{array}{c} 0.29\substack{+0.15\\-0.12}\\ 0.41\substack{+0.49\\-0.23}\\ 0.48\substack{+0.70\\-0.29}\end{array}$
Tucana III	$-1.49^{+0.20}_{-0.20}$	37^{+9}_{-9}	$25.0^{+2.0}_{-2.0}$	$-102.3^{+0.4}_{-0.4}$	$< 1.2^{c}$	$-2.42^{+0.07}_{-0.08}$	$< 0.19^{c}$

Ba modeling in Milky-Way $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- Rizutti+18: Rotating
 Massive stars (RMS)
 - r-process from NSM or Magneto-Rotationally
 Driven (MRD) SNe
 - The origin of Ba at [Fe/ H] < -2 is mostly rprocess.

Rizutti+18

Results: Modify IMF

- Choosing IMF with smaller number of massive stars, [Ba/Fe] can be adjusted
- [Ba/Fe] decreases as [Fe/H] increases, as type-Ia is not negligible

Discussion1: Comparison to MW $[X/Y] = \log_{10} \left[\frac{N_X}{N_Y} \right] + C$ Normalized to solar

- * The origin of Ba is "main" r-process and "main" s-process.
 - * \rightarrow (NSM or some other r-process) and (low-mass) AGB stars.
- * The stochasticity of r-process diversify [Ba/Fe]: MW should be somewhere between Eu-detected and other UFDs.

