

Yuta Tarumi with Naoki Yoshida, Takuma Suda, Shigeki Inoue, and Auriga team

What are / Why UFDs?

* UFDs are small ($<10^{5}$ Lsun) satellite galaxies.
* UFDs are old.
* Good probe for high-z galaxy.
* Stochasticity: "0 or 1 r-process".
* Small but important !

Why Barium?
 $[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C$
 Normalized to solar

* A Neutron-capture element that is Easy to observe.
- Ba is detected in 16/16 UFDs.
* A solid theoretical framework: r/s process
- Caveat: $\sim 10 \%$ from r-process, $\sim 90 \%$ from s-process.
* We need to take into account the contribution from both r-process and s-process

Rarity of r-process

$$
[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C
$$

Normalized to solar

* The scatter of $[\mathrm{Eu} / \mathrm{Fe}]$ among halo stars is quite large compared to other elements.
* Only 3/16 UFDs have Eu detection.
* \rightarrow r-process event should be rare and prolific.

$$
\text { Ba1n UHDS } \begin{aligned}
& {[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C} \\
& \text { Normalized to solar }
\end{aligned}
$$

* Stars with Eu detection have high Ba. Abundance is consistent with the "rare, prolific r-process event".
* What is the origin of Ba in "no r-process" UFDs?
* Can AGB stars explain the Ba abundance?

Ret II, Tuc III, and Gru II have Eu-detected stars

Motivation

$$
[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C
$$

Normalized to solar
*What is the origin of Ba in "no r-process" UFDs?

* UFDs quench within the first 1 Gyr, weaker AGB contribution than Milky-Way.
* Can AGB stars contribute to the chemical enrichment of UFDs?

Hansen+20

Method: simulation
 $[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C$
 Normalized to solar

* Code: AREPO
* Auriga galaxy formation model
* Ba only from AGB stars
- Prepare two UFD progenitors with different star formation history: "large" (2×10^{4} Msun) and "small" (3×10^{3} Msun).

Results: $[\mathrm{Ba} / \mathrm{Fe}]$ value

$$
[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C
$$

Normalized to solar

- $[\mathrm{Ba} / \mathrm{Fe}]$ is too low.
* Keep forming stars for a long time?
- However, the star formation duration of "Large UFD" is at the longest end of UFDs.

Large UFD

Small UFD

Results: $[\mathrm{Ba} / \mathrm{Fe}]$ scatter
 $\left.x y=\log _{0} \frac{x}{x} \frac{x}{x}\right]+c$
 Normalized to solar

* If star formation duration is long (> ~500Myr), [Ba/Fe] scatter would be too large.
* The standard model fails to reproduce the Ba abundance.
* Possible solutions are...
- Modify IMF (skipped).
* Enhance Ba production in short timescale and bring [Ba/Fe] up at the left.

Large UFD

Small UFD

Results: additional Ba source $\left.{ }^{[X / \gamma]=\log _{q}\left[\frac{x_{x}}{N_{r}}\right]}\right]+c$

 Normalized to solar* Adding 3×10^{-10} Msun of Ba from massive stars per 1 Msun of stars formed
* [Ba/Fe] roughly matches while keeping [$\mathrm{Ba} / \mathrm{Fe}$] scatter small.

Another source

Discussion1: What is the origin of Ba in UFDs? ${ }^{[X / Y]=\log _{10}\left[\frac{N_{x}}{N_{Y}}\right]+C}$

 Normalized to solar* super-AGB stars?
* Even with recent yield (Doherty+17) Ba abundance is not reproduced.
- Rotating massive stars?
* The model uncertainty is still quite large and may reproduce Ba abundance. Further observations (such as the rotation of OB stars) can constrain better.
* Halo stars are mostly r-process dominant. However, superAGB and rotating massive stars are s-process.
* r-process or s-process?: we need observation!

Discussion2: Diversity among UFDs ${ }^{[x / y]}=\log _{[g}\left[\frac{\left[x_{x}\right.}{N_{r}}\right]+c$ Normalized to solar

*What is the origin of the diversity of $[\mathrm{Ba} / \mathrm{Fe}]$ among UFDs?

* Possible factors: 1. yield, 2. IMF, 3. SFH, assuming well-sampling.
* Since $[\mathrm{Fe} / \mathrm{H}]$ is similar, $\mathbf{1}$. and 2. should be similar.
* SFH is important if delayed source (like AGB) is important, but AGB has shown to be subdominant, and there's no other candidates
* Rare event?

Original figure: Hansen+20 [Fe/H]

-	Halo	-	Boo II	-	Gru II	-	Hor I	-	Psc II	-	Segue 1	-	Tri II	-	Tuc III	\star	ru II
-	Bool	-	Com Ber	-	Her	\bullet	Leo IV	\bullet	Ret II	-	Segue 2	-	Tuc II	-	UMa II		

Conclusion: We need something. $\left.{ }^{[\alpha / \gamma]}=\log _{\theta} \left\lvert\, \frac{x_{x}}{N_{r}}\right.\right]+c$ Normalized to solar

* Ba cannot be explained only by AGB stars.
* Possible solutions are...
* Tweaking IMF.
- Some other Ba source.
* It should produce 3×10^{-10}

Msun of Ba from 1 Msun of stars formed.

dwarf \& UFD list

Simon+19

Dwarf	M_{V}	$\begin{gathered} R_{1 / 2} \\ (\mathrm{pc}) \end{gathered}$	Distance (kpc)	$\begin{gathered} v_{\text {hel }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\left(\mathrm{km} \mathrm{~s}^{\sigma}\right)$	$[\mathrm{Fe} / \mathrm{H}]$	$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$
Tucana IV	$-3.50_{-0.28}^{+0.28}$	127_{-22}^{+26}	$48.0_{-4.0}^{+4.0}$				
Sculptor	$-10.82_{-0.14}^{+0.14}$	279_{-16}^{+16}	$86.0_{-5.0}^{+5.0}$	$111.4_{-0.1}^{+0.1}$	$9.2_{-1.1}^{+1.1}$	$-1.73_{-0.02}^{+0.03}$	$0.44_{-0.02}^{+0.02}$
Cetus II	$0.00_{-0.68}^{+0.68}$	17_{-5}^{+9}	$30.0_{-3.0}^{+3.0}$				
Cetus III	$-2.45{ }_{-0.56}^{+0.57}$	90_{-14}^{+32}	$251.0_{-11.0}^{+24.0}$				
Triangulum II	$-1.60_{-0.76}^{+0.76}$	16_{-4}^{+4}	$28.4_{-1.6}^{+1.6}$	$-381.7_{-1.1}^{+1.1}$	$<3.4{ }^{\text {c }}$	$-2.24_{-0.05}^{+0.05}$	$0.53_{-0.38}^{+0.12}$
Segue 2	$-1.98{ }_{-0.88}^{+0.88}$	40_{-4}^{+4}	$37.0_{-3.0}^{+3.0}$	$-40.2_{-0.9}^{+0.9}$	$<2.2^{\text {c }}$	$-2.144_{-0.15}^{+0.16}$	$0.39_{-0.13}^{+0.12}$
DESJ0225+0304	$-1.10_{-0.30}^{+0.50}$	19_{-5}^{+9}	$23.8{ }_{-0.5}^{+0.7}$				
Hydrus I	$-4.71{ }_{-0.08}^{+0.08}$	53_{-4}^{+4}	$27.6_{-0.5}^{+0.5}$	$80.4{ }_{-0.6}^{+0.6}$	$2.7_{-0.4}^{+0.5}$	$-2.52_{-0.09}^{+0.09}$	$0.41_{-0.08}^{+0.08}$
Fornax	$-13.34_{-0.14}^{+0.14}$	792_{-18}^{+18}	$139.0_{-3.0}^{+3.0}$	$55.2_{-0.1}^{+0.1}$	$11.7_{-0.9}^{+0.9}$	$-1.07_{-0.01}^{+0.02}$	$0.27_{-0.01}^{+0.01}$
Horologium I	$-3.76_{-0.56}^{+0.56}$	40_{-9}^{+10}	$87.0_{-11.0}^{+13.0}$	$112.8_{-2.6}^{+2.5}$	$4.9{ }_{-0.9}^{+2.8}$	$-2.76_{-0.10}^{+0.10}$	$0.17_{-0.03}^{+0.20}$
Horologium II	$-1.56_{-1.02}^{+1.02}$	44_{-14}^{+15}	$78.0{ }_{-7.0}^{+8.0}$				
Reticulum II	$-3.99_{-0.38}^{+0.38}$	51_{-3}^{+3}	$31.6{ }_{-1.4}^{+1.5}$	$62.8{ }_{-0.5}^{+0.5}$	$3.3{ }_{-0.7}^{+0.7}$	$-2.65{ }_{-0.07}^{+0.07}$	$0.28_{-0.09}^{+0.09}$
Eridanus II	-7.10 ${ }_{-0.30}^{+0.30}$	246_{-17}^{+17}	$366.0_{-17.0}^{+17.0}$	$75.6_{-1.3}^{+1.3}$	$6.9_{-0.9}^{+1.2}$	$-2.38_{-0.13}^{+0.13}$	$0.47_{-0.09}^{+0.12}$
Reticulum III	$-3.30_{-0.29}^{+0.29}$	64_{-23}^{+26}	$92.0_{-13.0}^{+13.0}$				
Pictor I	$-3.67_{-0.60}^{+0.60}$	32_{-15}^{+15}	$126.0_{-16.0}^{+19.0}$				
Columba I	$-4.20_{-0.20}^{+0.20}$	117_{-12}^{+12}	$183.0_{-10.0}^{+10.0}$				
Carina	$-9.45{ }_{-0.05}^{+0.05}$	311_{-15}^{+15}	$106.0_{-5.0}^{+5.0}$	$222.9_{-0.1}^{+0.1}$	$6.6_{-1.2}^{+1.2}$	$-1.80_{-0.02}^{+0.02}$	$0.24{ }^{\text {d }}$
Pictor II	$-3.20_{-0.50}^{+0.40}$	47_{-13}^{+20}	$45.0{ }_{-4.0}^{+5.0}$				
Carina II	$-4.50_{-0.10}^{+0.10}$	92_{-8}^{+8}	$36.2_{-0.6}^{+0.6}$	$477.2_{-1.2}^{+1.2}$	$3.4{ }_{-0.8}^{+1.2}$	$-2.44_{-0.09}^{+0.09}$	$0.22_{-0.07}^{+0.10}$
Carina III	$-2.40{ }_{-0.20}^{+0.20}$	30_{-8}^{+8}	$27.8_{-0.6}^{+0.6}$	$284.6_{-3.1}^{+3.4}$	$5.6_{-2.1}^{+4.3}$		
Ursa Major II	$-4.43_{-0.26}^{+0.26}$	139_{-9}^{+9}	$34.7_{-1.9}^{+2.0}$	$-116.5{ }_{-1.9}^{+1.9}$	$5.6 .{ }_{-1.4}^{+1.4}$	$-2.23_{-0.24}^{+0.21}$	$0.677_{-0.15}^{+0.20}$
Leo T	$-8.00^{\text {e }}$	118_{-11}^{+11}	$409.0_{-27.0}^{+29.0}$	$38.1_{-2.0}^{+2.0}$	$7.5_{-1.6}^{+1.6}$	$-1.91_{-0.14}^{+0.12}$	$0.43_{-0.09}^{+0.13}$
Segue 1	$-1.30_{-0.73}^{+0.73}$	24_{-4}^{+4}	$23.0{ }_{-2.0}^{+2.0}$	$208.5_{-0.9}^{+0.9}$	$3.7_{-1.1}^{+1.4}$	$-2.71{ }_{-0.39}^{+0.45}$	$0.95_{-0.26}^{+0.42}$

Dwarf	M_{V}	$\begin{gathered} R_{1 / 2} \\ (\mathrm{pc}) \end{gathered}$	Distance (kpc)	$\begin{gathered} v_{\text {hel }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{gathered} \sigma \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$	$[\mathrm{Fe} / \mathrm{H}]$	$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$
Leo I	$-11.78_{-0.28}^{+0.28}$	270_{-16}^{+17}	$254.0_{-15.0}^{+16.0}$	$282.9{ }_{-0.5}^{+0.5}$	$9.2{ }_{-0.4}^{+0.4}$	$-1.48_{-0.01}^{+0.02}$	$0.26_{-0.01}^{+0.01}$
Sextans	$-8.944_{-0.06}^{+0.06}$	456_{-15}^{+15}	$95.0_{-3.0}^{+3.0}$	$224.3{ }_{-0.1}^{+0.1}$	$7.9_{-1.3}^{+1.3}$	$-1.97{ }_{-0.04}^{+0.04}$	$0.388_{-0.03}^{+0.03}$
Ursa Major I	$-5.13_{-0.38}^{+0.38}$	$295{ }_{-28}^{+28}$	$97.3_{-5.7}^{+6.0}$	$-55.3_{-1.4}^{+1.4}$	$7.0_{-1.0}^{+1.0}$	$-2.16_{-0.13}^{+0.11}$	$0.62_{-0.08}^{+0.10}$
Willman 1	$-2.90_{-0.74}^{+0.74}$	33_{-8}^{+8}	$45.0_{-10.0}^{10.0}$	$-14.1_{-1.0}^{+1.0}$	$4.0_{-0.8}^{+0.8}$	-2.19 ${ }_{-0.08}^{+0.08}$	
Leo II	$-9.74{ }_{-0.04}^{+0.04}$	171_{-10}^{+10}	$233.0_{-14.0}^{+14.0}$	$78.3_{-0.6}^{+0.6}$	$7.4{ }_{-0.4}^{+0.4}$	$-1.68{ }_{-0.03}^{+0.02}$	$0.34_{-0.02}^{+0.02}$
Leo V	$-4.29_{-0.36}^{+0.36}$	49_{-16}^{+16}	$169.0_{-4.0}^{+4.0}$	$170.9_{-1.9}^{+2.1}$	$2.3_{-1.6}^{+3.2}$	$-2.48_{-0.21}^{+0.21}$	$0.47_{-0.13}^{+0.23}$
Leo IV	$-4.99_{-0.26}^{+0.26}$	114_{-13}^{+13}	$154.0_{-5.0}^{+5.0}$	$132.3_{-1.4}^{+1.4}$	$3.3{ }_{-1.7}^{+1.7}$	$-2.29_{-0.22}^{+0.19}$	$0.56_{-0.14}^{+0.19}$
Crater II	$-8.20_{-0.10}^{+0.10}$	1066_{-86}^{+86}	$117.5_{-1.1}^{+1.1}$	$87.5{ }_{-0.4}^{+0.4}$	$2.7_{-0.3}^{+0.3}$	$-1.98{ }_{-0.10}^{+0.10}$	$0.22_{-0.03}^{+0.04}$
Virgo I	-0.80 ${ }_{-0.90}^{+0.90}$	38_{-11}^{+12}	$87.0_{-8.0}^{+13.0}$				
Hydra II	$-4.866_{-0.37}^{+0.37}$	67_{-13}^{+13}	$151.0_{-7.0}^{+8.0}$	$303.1{ }_{-1.4}^{+1.4}$	$<3.6^{\text {c }}$	$-2.02_{-0.08}^{+0.08}$	$0.40_{-0.26}^{+0.48}$
Coma Berenices	$-4.28_{-0.25}^{+0.25}$	69_{-4}^{+5}	$42.0_{-1.5}^{+1.6}$	98.1 ${ }_{-0.9}^{+0.9}$	$4.6_{-0.8}^{+0.8}$	$-2.43_{-0.11}^{+0.11}$	$0.46{ }_{-0.08}^{+0.09}$
Canes Venatici II	$-5.17_{-0.32}^{+0.32}$	71_{-11}^{+11}	$160.0_{-4.0}^{+4.0}$	$-128.9_{-1.2}^{+1.2}$	$4.6_{-1.0}^{+1.0}$	$-2.35_{-0.19}^{+0.16}$	$0.57_{-0.12}^{+0.15}$
Canes Venatici I	$-8.73_{-0.06}^{+0.062}$	437_{-18}^{+18}	$211.0_{-6.0}^{+4.0}$	$30.9_{-0.6}^{+0.6}$	$7.6_{-0.4}^{+0.4}$	$-1.91_{-0.04}^{+0.04}$	$0.39_{-0.02}^{+0.03}$
Boötes II	$-2.94{ }_{-0.75}^{+0.74}$	39_{-5}^{+5}	$42.0{ }_{-1.0}^{+1.0}$	$-117.0_{-5.2}^{+5.2}$	$10.5{ }_{-7.4}^{+7.4}$	$-2.79_{-0.10}^{+0.06}$	$<0.35^{\text {c }}$
Boötes I	$-6.02_{-0.25}^{+0.25}$	191_{-8}^{+8}	$66.0_{-2.0}^{+2.0}$	$101.8_{-0.7}^{+0.7}$	$4.6{ }^{+0.8}$	$-2.35_{-0.08}^{+0.09}$	$0.44_{-0.06}^{+0.07}$
Ursa Minor	$-9.03_{-0.05}^{+0.05}$	405_{-21}^{+21}	$76.0_{-4.0}^{+4.0}$	$-247.2_{-0.8}^{+0.8}$	$9.5{ }_{-1.2}^{+1.2}$	$-2.12_{-0.02}^{+0.03}$	$0.33_{-0.03}^{+0.02}$
Draco II	$-0.80_{-1.00}^{+0.40}$	19_{-3}^{+4}	$21.5{ }_{-0.4}^{+0.4}$	$-342.5_{-1.2}^{+1.1}$	$<5.9^{\text {c }}$	$-2.70_{-0.10}^{+0.10}$	$<0.24^{\text {c }}$
Hercules	$-5.83{ }_{-0.17}^{+0.17}$	216_{-20}^{+20}	$132.0_{-6.0}^{+6.0}$	$45.0_{-1.1}^{+1.1}$	$5.1_{-0.9}^{+0.9}$	$-2.47_{-0.12}^{+0.13}$	$0.47_{-0.08}^{+0.11}$
Draco	$-8.88_{-0.05}^{+0.05}$	231_{-17}^{+17}	$82.0_{-6.0}^{+6.0}$	$-290.7_{-0.8}^{+0.7}$	$9.1{ }_{-1.2}^{+1.2}$	$-2.00_{-0.02}^{+0.02}$	$0.34_{-0.02}^{+0.02}$
Sagittarius	$-13.500_{-0.15}^{+0.15}$	2662_{-193}^{+193}	$26.7_{-1.3}^{+1.3}$	$139.4_{-0.6}^{+0.6}$	$9.6_{-0.4}^{+0.4}$	$-0.53_{-0.02}^{+0.03}$	$0.17_{-0.02}^{+0.02}$
Sagittarius II	$-5.20_{-0.10}^{+0.10}$	33_{-2}^{+2}	$70.1_{-2.3}^{+2.3}$				
Indus II	$-4.30_{-0.19}^{+0.19}$	1811_{-64}^{+70}	$214.0{ }_{-16.0}^{+16.0}$				
Grus II	$-3.90_{-0.22}^{+0.22}$	93_{-12}^{+16}	$53.0_{-5.0}^{+5.0}$				

Dwarf	M_{V}	$R_{1 / 2}$ (pc)	Distance (kpc)	$v_{\text {hel }}$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	σ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$[\mathrm{Fe} / \mathrm{H}]$	$\sigma_{[\mathrm{Fe} / \mathrm{H}]}$
Pegasus III	$-4.10_{-0.50}^{+0.50}$	78_{-25}^{+31}	$205.0_{-20.0}^{+20.0}$	$-222.9_{-2.6}^{+2.6}$	$5.4_{-2.5}^{+3.0}$	$-2.40_{-0.15}^{+0.15}$	
Aquarius II	$-4.36_{-0.14}^{+0.14}$	160_{-26}^{+26}	$107.9_{-3.3}^{+3.3}$	$-71.1_{-2.5}^{+2.5}$	$5.4_{-0.9}^{+3.4}$	$-2.30_{-0.50}^{+0.50}$	
Tucana II	$-3.90_{-0.20}^{+0.20}$	121_{-35}^{+35}	$58.0_{-8.0}^{+8.0}$	$-129.1_{-3.5}^{+3.5}$	$8.6_{-2.7}^{+4.4}$	$-2.90_{-0.16}^{+0.15}$	$0.29_{-0.12}^{+0.15}$
Grus I	$-3.47_{-0.59}^{+0.59}$	28_{-23}^{+23}	$120.0_{-11.0}^{+12.0}$	$-140.5_{-1.4}^{+2.6}$	$2.9_{-1.1}^{+2.0}$	$-1.42_{-0.42}^{+0.55}$	$0.41_{-0.23}^{+0.49}$
Pisces II	$-4.23_{-0.38}^{+0.38}$	60_{-10}^{+10}	$183.0_{-150.0}^{+15.0}$	$-226.5_{-2.7}^{+2.7}$	$5.4_{-2.4}^{+3.6}$	$-2.45_{-0.07}^{+0.07}$	$0.48_{-0.29}^{+0.70}$
Tucana V	$-1.60_{-0.49}^{+0.49}$	16_{-5}^{+5}	$55.0_{-9.0}^{+9.0}$				
Phoenix II	$-2.70_{-0.40}^{+0.40}$	37_{-8}^{+8}	$84.3_{-4.0}^{+4.0}$				
Tucana III	$-1.49_{-0.20}^{+0.20}$	37_{-9}^{+9}	$25.0_{-2.0}^{+2.0}$	$-102.3_{-0.4}^{+0.4}$	$<1.2^{\mathrm{c}}$	$-2.42_{-0.08}^{+0.07}$	$<0.19^{c}$

* Rizutti+18: Rotating Massive stars (RMS)
* r-process from NSM or Magneto-Rotationally
 Driven (MRD) SNe
- The origin of Ba at $[\mathrm{Fe} /$ $\mathrm{H}]<-2$ is mostly $\mathrm{r}-$ process.

Results: Modify IMF

$[X / Y]=\log _{10}\left[\frac{N_{X}}{N_{Y}}\right]+C$
Normalized to solar

* Choosing IMF with smaller number of massive stars, $[\mathrm{Ba} / \mathrm{Fe}]$ can be adjusted
* [$\mathrm{Ba} / \mathrm{Fe}$] decreases as $[\mathrm{Fe} / \mathrm{H}]$ increases, as type-Ia is not negligible

Discussion1: Comparison to MW $\langle X / Y]=\log _{[0}\left[\frac{\left[x_{x}\right.}{N_{x}}\right]+c$ Normalized to solar

* The origin of Ba is "main" r-process and "main" s-process. * \rightarrow (NSM or some other r-process) and (low-mass) AGB stars.
* The stochasticity of r-process diversify [Ba/Fe]: MW should be somewhere between Eu-detected and other UFDs.
- If we fix [Fe/H]:
* MW is at higher density peak.
* MW is larger than UFDs because of larger mixing mass.
* \rightarrow Stochasticity (" 0 or $1^{\prime \prime}$-ness) is more important in UFDs than in MW.

