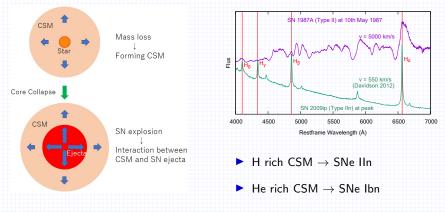
The features of multiple mass eruptions from progenitors of Type IIn supernovae

Naoto Kuriyama, Toshikazu Shigeyama

Department of Astronomy, The University of Tokyo

August 18th, 2020

Contents

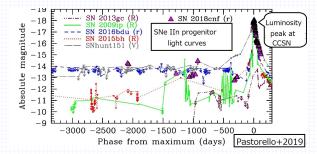

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

1. Introduction

- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

Supernova powered by circumstellar matter interaction

- SN explosion in a dense circumstellar matter (CSM) → interaction between SN ejecta and CSM
- ▶ $v_{\rm CSM} \ll v_{\rm ejecta} \rightarrow$ narrower emission line



Mechanism of intense mass loss has not been completely clarified

< □ > < 同 > < 3

Intense mass loss prior to SNe IIn

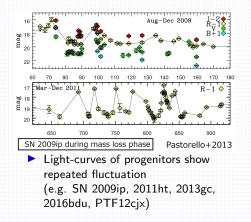
- For progenitors of SNe IIn, $\dot{M} \sim 10^{-4} \cdot 10^{-2} M_{\odot}$ /yr (Taddia+2013)
 - ightarrow Can not be explained by continuous mass loss model like Vink+2001
- Indicate episodic dynamical mass loss events

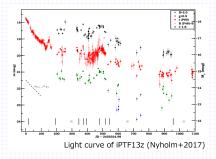
- Some progenitors exhibit significant fluctuation in the luminosity (e.g. SN 2018cnf Pastorello+2019; SN 2013gc Reguitti+2019; PTF12cjx Ofek+2014; SN 2009ip Pastorello+2013) → Related to intense mass loss?
- Mechanism and energy source of these mass loss have not been clarified

Mechanism and energy source of eruptive mass loss

Candidate for the energy source

- Pulsational pair instability (Woosley+ 2007, 2017)
- Flash in a degenerate core (Woosley & Heger 2015)
- Core neutrino emission weakens gravity (Moriya 2014)
- Wave-driven mass loss (Shiode & Quataert 2014)
- Burning instability (Smith & Arnett 2014)
- Magnetic activity (Soker & Gilkis 2017)
- Binary interaction (Danieli & Soker 2019)

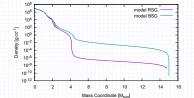

Dynamical simulation of the envelope into which energy is deposited


- Super-Eddington wind Quataert+ (2016), Fuller (2017), Fuller & Ro (2018), Ouchi & Maeda (2019)
- dynamical eruption
 Dessart+(2010), Owocki+ (2019), Kuriyama & Shigeyama (2020)

 \rightarrow These papers study a "single dynamical eruption"

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Eruptive mass ejection often repeats


- Bumps in SN light-curves also indicate multiple mass loss phases (e.g. iPTF13z, SN 2010mc, 2006jd)
- A mass ejection can alter the density structure of the envelope and affect the subsequent mass ejection
- We investigate the dynamical evolution of the envelope into which energy is deposited twice by radiation hydrodynamical simulations

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

Initial models and energy injections

We make two progenitor models using MESA(Paxton+2011,2013,2015,2018,2019)

Name	MZAMS	Ζ	R	$T_{\rm eff}$	M _{He core}	$M_{\rm H\ env}$	Eenvelope	Time to CCSN
RSG	15 <i>M</i> _☉	0.02	696R ₀	3500K	4.1 <i>M</i> _☉	10.6M _O	$-5.6 imes10^{47}$ erg	11.2 yr
BSG	15 <i>M</i> _☉	0.0002	76R ₀	10200K	4.2M _☉	10.8M _☉	$-1.7 imes10^{49}$ erg	7.9 yr

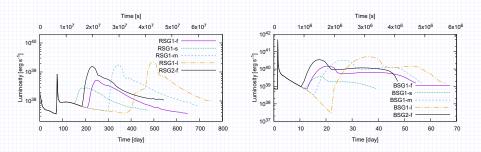
We deposit energy into the envelope of these models twice (E_{inj2} and E_{inj2}) with a time separation Δt_{inj} and calculate dynamical evolution

Mass Coordin	late [M _{sun}]			
Calculation mod	lel Progenitor	E _{inj1} [erg]	E _{inj2} [erg]	$\Delta t_{ m inj}$
RSG1-f (fiducia	I)	$1.5 imes10^{47}$	$1.5 imes10^{47}$	$1.0t_{ m dyn}$ (98 day)
RSG1-s (short))	$1.5 imes10^{47}$	$1.5 imes 10^{47}$	0.5t _{dyn} (49 day)
RSG1-m (mediu	m) RSG	$1.5 imes 10^{47}$	$1.5 imes10^{47}$	2.0t _{dyn} (196 day)
RSG1-I (long)		$1.5 imes 10^{47}$	$1.5 imes 10^{47}$	4.0t _{dvn} (392 day)
RSG2-f (fiducia	I)	$1.5 imes10^{47}$	$3.0 imes 10^{47}$	$1.0t_{\rm dyn}$ (98 day)
BSG1-f (fiducia	I)	$6.0 imes 10^{48}$	$6.0 imes 10^{48}$	$1.0t_{\rm dyn}~(3.1 \times 10^5 \text{ s})$
BSG1-s (short)		$6.0 imes10^{48}$	$6.0 imes 10^{48}$	$0.5t_{\rm dyn}~(1.5 \times 10^5 \text{ s})$
BSG1-m (mediu	m) BSG	$6.0 imes10^{48}$	$6.0 imes 10^{48}$	$2.0t_{\rm dyn}~(6.1 \times 10^5 \text{ s})$
BSG1-I (long)		$6.0 imes10^{48}$	$6.0 imes10^{48}$	$4.0t_{\rm dyn}~(1.2 \times 10^6~{ m s})$
BSG2-f (fiducia	I)	$6.0 imes10^{48}$	$9.0 imes10^{48}$	$1.0t_{ m dyn}~(3.1 imes 10^5~ m s)$

Radiation hydrodynamical simulation

Equation system in Lagrangian coordinates

- Solved by Godunov type scheme + PPM (Collela & Woodward 1984)
 HELMHOLTZ equation of state (Timmes & Swesty 2000)
- Radiative transfer is solved by flux-limited diffusion method
 - (Levermore & Pomraning 1981, Shigeyama & Nomoto 1989)

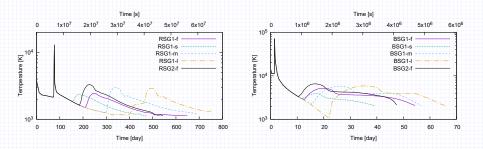

$$L = -rac{16\pi^2 a c r^4}{3\kappa} rac{\partial T^4}{\partial m} \lambda$$

- 1. Introduction
- 2. Method
- 3. Results
- 4. Discussion
- 5. Summary

3. Results

Light-curves

Light-curves



In the second eruption,

- Iuminosity rises and declines more slowly
 - \rightarrow Because of longer dynamical time and photon diffusion from a shock in the more extended envelope
 - \rightarrow Peak luminosity and brightening timescale seem to be determined by shock velocity $v_{\rm explosion}$
- the deposited energy is more effectively converted into radiation

Color evolution

Second outburst is significantly redder compared with the first one

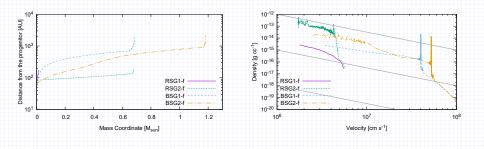
Э

イロン イロン イヨン イ

Amount of ejected mass

Amount of ejected mass for each eruption and model

model		First eruption (ΔM_1)	Second eruption (ΔM_2)
RSG1-f			0.0015M _O
RSG1-s	(0.0011 <i>M</i>
RSG1-m	$(E_{inj2} = E_{inj2})$	0.013 <i>M</i> _☉	0.0013M _O
RSG1-I		Ű	0.0007 <i>M</i>
RSG2-f	$(E_{inj2} = 2E_{inj1})$		0.73 <i>M</i>
BSG1-f			0.51M _☉
BSG1-s			0.59 <i>M</i>
BSG1-m	$(E_{\rm inj2} = E_{\rm inj1})$	0.19 <i>M</i> _☉	0.55 <i>M</i>
BSG1-I		Ŭ	0.56 <i>M</i>
BSG2-f	$(E_{\rm inj2}=1.5E_{\rm inj1})$		2.02 <i>M</i> ⊙

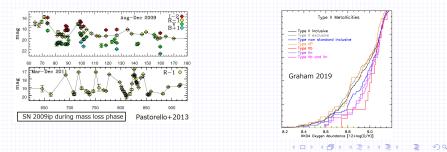

 $\mathsf{RSG1} (E_{\mathrm{inj1}} = E_{\mathrm{inj2}}) \rightarrow \Delta M_1 > \Delta M_2$

because of shock wave attenuation due to diffusion of photons in the second ejection BSG1 ($E_{inj1} = E_{inj2}$) $\rightarrow \Delta M_1 < \Delta M_2$

because of smaller binding energy of the envelope in the second ejection

- A factor of few difference in deposited energy make larger (by a few magnitude of) difference in the amount of ejected mass
- Model BSG requires ~ten times larger amount of energy than model RSG to eject the same mass

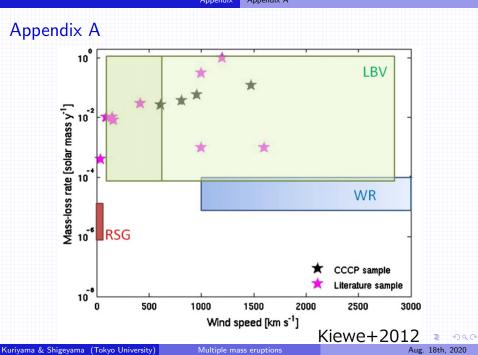
Resultant CSM distribution at the time of core-collapse



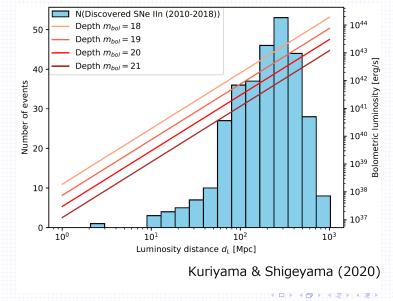
- CSM lies at a few 100 AU (RSG) or several 100 AU (BSG)
- Velocity of CSM is almost decided by the escape velocity of the progenitor at the time of eruption

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

Discussion

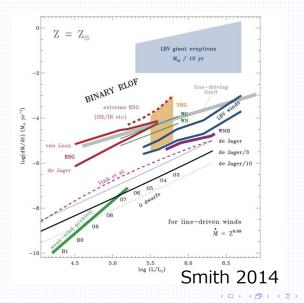

- Unambiguous difference between the first and second mass ejection in terms of light-curves, colors, and the amounts of ejected mass even in the case of E_{dep1} = E_{dep2}
- Small difference in the deposited energy E_{dep} is amplified to a large difference in the amount of ejected mass ΔM → Related to wide variety of CSM mass in each SN IIn?
- The envelope of model RSG can be easily expelled compared with BSG → SNe IIn often occur in metal rich, high mass galaxy?

Summary

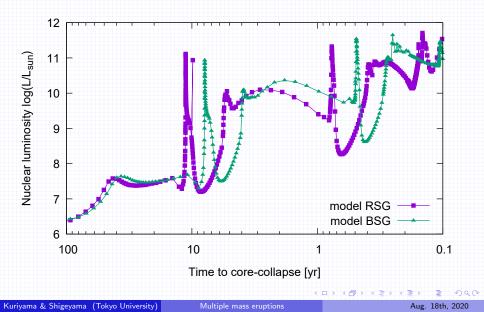

- Progenitors of CSM interacting SNe (SNe IIn/Ibn) often experience intense mass loss associated with significant fluctuation of the luminosity.
- Mass loss rate is so high that it can not be explained by continuous wind mass loss model and should be treated dynamically.
- Mechanism and energy source of such events have not been clarified.
- Dynamical mass ejection may often occur repeatedly.
- A mass ejection alters the density structure of the progenitor and affects the properties of subsequent ejection.
- We carried out radiation hydrodynamical simulations of the envelope into which energy is deposited twice.
- Our results show unambiguous difference between the first and second mass ejection in terms of light curves, colors, and the amounts of ejected unbounded mass even in the case of E_{dep1} = E_{dep2}.
- We did not deal with the origin of extra energy which has not been clarified so far, and it should be studied in our future work.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Appendix B


Appendix B

DQC


Appendix C

Appendix C

Appendix D

Appendix D

