General

Basic

Advanced

Frontier in Exoplanet Characterization

Hajime Kawahara

RESCEU Online Summer School 2020

Why Exoplanets?

Universality of Us and Where We Live in

"Exoplanet Characterization"

Like Earth? Water, oxygen? Has ocean? Comfortable?

Like Jupiter? Very different?

Contents

1. What kind of exoplanets can we characterize? Landscape of transit/directly-imaged exoplanets

2. How do we characterize exoplanets? Established techniques for exoplanet characterization

3. How will we characterize exoplanets? On-going and future techniques toward exo Earths

Direct imaging

Exoplanet landscape (solar-type star by Kepler)

Kawahara and Masuda (2019)

Exoplanet landscape (solar-type star)

Kawahara and Masuda (2019)

Advanced Fill a gap by Exo JASMINE

TOI-700: Bright but small signal (depth=0.05%)

Short Exoplanet landscape

- Jupiter in solar system is universal.
 Super Earth < 1 AU and cool Neptune @ several AU, which do not exist in solar system, are also common.
- Current astronomers are trying to cheat with Earths around low-mass stars or young self-luminous planets because it's easy to observe.
- Earth not yet

If we find exo-Earths, we want to know

Molecules in atmosphere H2O or O2 (biosignature)

Surface environment Atmosphere, climate Continents/ocean

Exo Earth not yet. Lesson using other exoplanets

Hot Jupiters and self-luminous planets are mainly used in reality

History/Future of Characterization by Transit Exoplanets

Low-Res Spectroscopy (space)

Low-R Spectroscopy from space (transmission)

Hot Jupiters Transmission

Shadow

Shadow

Shadow

Shadow

Shadow

Shadow

Shadow

Shadow

Insensitive to temperature structure Sensitive to molecules at higher atmosphere Total modeling required

Low-R Spectroscopy from space (emission)

Integrated blackbody Sensitive to temperature structure Sensitive to molecules at mid atmosphere

Parmentier+18

Atoms/Molecules detection using High-R Spectroscopy

HRS Thermal Inversion by Titanium Oxide

Basic

WASP33b emission using Subaru/HDS = star : planet ~ 1000 : 1

Titanium oxide absorbs blue light and heats the upper atmosphere, like O3 on Earth.

Short Summary

LRS from space: metals, H2O, haze, scattering, black body Pros: intuitive, can detect continuum (haze, clouds, scattering) Cons: Total modeling required -> weak for systematics Toward exo Earth:

JWST will try to detect molecules in terrestrial planets @ late-M Larger telescope is justice (LUVIOR...)

HRS from ground: CO, H2O, TiO, HCN, CH4, metals, ions, T-P structure Pros: molecules even with many lines, no need of total modeling **Cons:** connection with model is much more difficult Toward exo Earth:

Applicable to water detection(many lines). Larger telescope is justice (TMT, E-ELT)

History and future of direct imaging

Basic

Self-luminous young planets (T ~ 1000 K)

Sudden open like gravitational waves (my hope, not yet)

2nd gen: Adaptive Optics, Coronagraph

Phase correction @ pupil by a deformable mirror

2nd gen: Adaptive Optics, Coronagraph

Basic

Why is direct imaging worth?

Spectrum

Molecules, dynamics, atmospheric structure **Biosignature in future**

Photometric variability

Planet Spin/Tilt

Surface Composition, Continents, Ocean in future

Low-Resolution Spectroscopy

Late L Brown Dwarf model well fitted? (covered by clouds)

Basic

Advanced High-Dispersion Coronagraphy

REACH collaboration

from RESCEU conference @Okinawa Hajime Kawahara Takayuki Kotani

Sebastien Vievard

Olivier Guyon

Julien Lozi

The first real **Spectrum by REACH** in Oct 16th (2019) Nemanja Jovanovic

Ananya Sahoo

🗭 Masato Ishizuka

Advanced High-Dispersion Coronagraphy on Subaru

REACH on Subaru telescope

2014 idea (Kawahara+2014)
2015-2017 Supported by RESCEU
2019 first light (engneering), open use (since S20B)
2020 Kiban A, first science obs (Aug 1-6 2020)

Advanced HDC significantly improves S/N

classical AO v.s. ExAO+Coronagraph

Speckle contrast to a host star

ExAO + Coronagraph + Small Injection can significantly increase planet signal in R=100,000 spectrum (0.95-1.75 um)

Advanced Power of REACH

First science run (this month!) HR8799e 5.5 hours pilot data. Now processing, we'll see...

Contrast = 3 x 10⁻⁴ -> planet : star = 1 : 10

S21A proposal welcome!

Short Summary Direct imaging Ground: self-luminous planets so far

Pros: cutting-edge technique can be tested by a small group. Cons: It will not reach Earth@solar-type star Toward exo Earth: 30-40 m class telescope will try to detect water/oxygen in terrestrial planets @ late-M

Direct imaging from space: not yet. Roman will open, HabEx, LUVIOR

Pros: No ExAO needed, it can reach Earth@solar-type star, it can detect oxygen, water.

Cons: dev by a small group with try-and-error is almost impossible It's not clear except for low-res spectroscopy

-> Methodology for space DI should be explored more.

Photometric variability as a new probe of exoplanets

Space Direct Imaging: Roman 2025-, HabEx/LUVOIR 203X-Reflection light from exoplanets around solar-type stars will be available

- Low resultion spectroscopy
- Time-series analysis

Variability of 2M1207b by HST (Zhou+ 2016)

How do we disentangle spatial and spectral information from time-series data?

2010 Cloudless simulation

2019 REAL EARTH (L2/PCA) Fan+2019

2012 full simulation K&F 2011, F&K 2012 NIR-Orange (SN=100)

-0.02 _______ 0.12 2020 REAL EARTH (NMF) Kawahara 2020

Color composite

2019 REAL EARTH single band (TESS) Luger+2019

2020 REAL EARTH (clouds) Kawahara & Masuda 2020

2016-01-01

Linear Inverse Problem

 $d(t) = \int W(t, \Omega) \mathbf{a}(\Omega) d\Omega \rightarrow \mathbf{d} = W\mathbf{a}$

Singular Value Decomposition $W = U^T \Lambda V$ Moore-Penrose Matrix $W^{-g} = V \Lambda^{-1} U^T$ $\Lambda = \begin{pmatrix} \Lambda_p & 0 \\ 0 & 0 \end{pmatrix}$ $\rho = (\alpha T d)$ $\Lambda_p \equiv diag(\kappa_1, ..., \kappa_p)$

$$oldsymbol{a}^{ ext{est}} = W^{-g}oldsymbol{d} = \sum_{i=1}^r rac{(oldsymbol{u}_i^Toldsymbol{d})}{\kappa_i}oldsymbol{v}_i$$
 Very ur

Tikhonov regularization

/ery unstable for small singular value κ_i

"L2" norm regularization

 $\boldsymbol{a}^{\text{est}} = V \Sigma_{\lambda} U^{T} \boldsymbol{d}^{\text{obs}} = \sum_{i=1}^{\min(N,M)} \frac{\kappa_{i}}{\kappa_{i}^{2} + \lambda^{2}} (\boldsymbol{u}_{i}^{T} \boldsymbol{d}) \boldsymbol{v}_{i} \quad \bigstar \quad \text{minimize} \quad Q_{\lambda} = |W\boldsymbol{a} - \boldsymbol{d}|^{2} + \lambda^{2} |\boldsymbol{a}|^{2}$

The math structure is clear, but needs to determine an arbitrary parameter.

Linear Inverse Problem with known covariance matrices

Bayesian LIP

Basic

likelihood
$$p(\boldsymbol{d}|\boldsymbol{a}) = \mathcal{N}(\boldsymbol{d}|W\boldsymbol{a}, \Sigma_{\boldsymbol{d}})$$

prior $p(\boldsymbol{a}) = \mathcal{N}(\boldsymbol{a}|\boldsymbol{0}, \Sigma_{\boldsymbol{a}}),$
Posterior: $p(\boldsymbol{a}|\boldsymbol{d}) = \frac{p(\boldsymbol{d}|\boldsymbol{a})p(\boldsymbol{a})}{p(\boldsymbol{d})} = \mathcal{N}(\boldsymbol{a}|\boldsymbol{\mu}, \Sigma_{\boldsymbol{a}}|\boldsymbol{d}) = \frac{\mathcal{N}(\boldsymbol{a}|\boldsymbol{\mu}, \Sigma_{\boldsymbol{a}}|\boldsymbol{d})}{\sum_{\boldsymbol{a}|\boldsymbol{d}} (W^T \Sigma_{\boldsymbol{d}}^{-1} W + \Sigma_{\boldsymbol{a}}^{-1})^{-1} W^T \Sigma_{\boldsymbol{d}}^{-1} \boldsymbol{d}}$

In general: Nonlinear parameters (NLPs) in W = W(g): axial tilt, spin rate Covarianceare modeled through a Gaussian process with hyperparameters:

$$\sum_{\mathbf{a}} \sum_{\mathbf{a}} K_{S}(\boldsymbol{\theta}_{\mathbf{a}})$$
$$\sum_{\mathbf{a}} K_{D}(\boldsymbol{\theta}_{\mathbf{d}})$$

$$p(\boldsymbol{a}|\boldsymbol{d},\boldsymbol{\theta_{a}},\boldsymbol{\theta_{d}},\boldsymbol{g}) = \frac{p(\boldsymbol{d}|\boldsymbol{a},\boldsymbol{\theta_{d}},\boldsymbol{g})p(\boldsymbol{a}|\boldsymbol{\theta_{a}})}{p(\boldsymbol{d}|\boldsymbol{\theta_{a}},\boldsymbol{\theta_{d}},\boldsymbol{g})} \implies p(\boldsymbol{d}|\boldsymbol{\theta_{a}},\boldsymbol{\theta_{d}},\boldsymbol{g}) = \mathcal{N}(\boldsymbol{d}|\boldsymbol{0},\boldsymbol{\Sigma_{d}} + W\boldsymbol{\Sigma_{a}}W^{T})$$

Posterior of NLPs given by MCMC: $p(\theta_a, \theta_d, g|d) \propto p(d|\theta_a, \theta_d, g)p(\theta_a)p(\theta_d)p(g)$ Posterior of a map: $p(a|d) = \int d\theta_a \int d\theta_d \int dg \, p(a, \theta_a, \theta_d, g|d)$ $= \int d\theta_a \int d\theta_d \int dg \, p(a|d, \theta_a, \theta_d, g)p(\theta_a, \theta_d, g|d) \approx \frac{1}{N_s} \sum_{n=0}^{N_s-1} p(a|d, \theta_a^{\dagger}, \theta_d^{\dagger}, g^{\dagger})$ Advanced Linear Inverse Problem + Matrix Factorization Kawahara 2020

$$d(t,\lambda) = \int \int W(t,\Omega) A(\Omega,k) X(k,\lambda) d\lambda d\Omega \longrightarrow D = WAX.$$

$$A \leftarrow AG^{-1} X \leftarrow GX$$
minimize $Q = \frac{1}{2} ||D - WAX||_F^2 + R(A,X) \rightarrow R(A,X) = \frac{\lambda_A}{2} ||A||_F^2 + \frac{\lambda_X}{2} \det(XX^T)$
subject to $A_{jk} \ge 0, X_{kl} \ge 0.$
Nonnegative MF
$$\int_{0}^{0} \frac{1}{2} \int_{0}^{0} \frac{1}{2} \int$$

Advanced

Dynamic Mapping

Kawahara and Masuda 2020

 $d_{i} = \sum_{i} W_{ij} A_{ij} \implies d = \tilde{W}a.$ $\tilde{W} = \begin{pmatrix} \mathcal{D}(w_{0}) & \mathcal{D}(w_{1}) & \cdots & \mathcal{D}(w_{N_{j}-1}) \end{pmatrix} \qquad a = \operatorname{vec}(A)$ $\omega_{i}: i\text{-th column of } \tilde{W} \qquad \mathcal{D}(y): \text{ Diagonal matrix from a vector } y$

Remark: We know a posterior of *a*. But, we need to reduce memory size and computational complexity.

The Kronecker-product type kernel $K = \alpha K_S \otimes K_T$ and <u>isomorphic transformation</u> enable us to do that.

Example: mean of a posterior of A

$$A^* = \alpha K_T \mathcal{D}(\boldsymbol{y}) W K_S$$
$$\boldsymbol{y} \equiv (I + \Pi_{\boldsymbol{d}} K_W)^{-1} \Pi_{\boldsymbol{d}} \boldsymbol{d}$$
$$K_W \equiv \alpha K_T \odot (W K_S W^T).$$

 \odot = element-wise product

Advanced Dynamic Mapping of Real data

Landscape to characterization

Summary

