

PARTICLE PRODUCTION INDUCED BY VACUUM DECAY IN REAL TIME FORMALISM

arXiv:2006.10986 [hep-th]

Soichiro Hashiba RESCEU, The University of Tokyo

Collaborator: Y. Yamada and J. Yokoyama

RESCEU Summer School 2020 on 19th Aug. 2020

Motivation

L. Parker, Phys. Rev. 183 (1969) 1057.

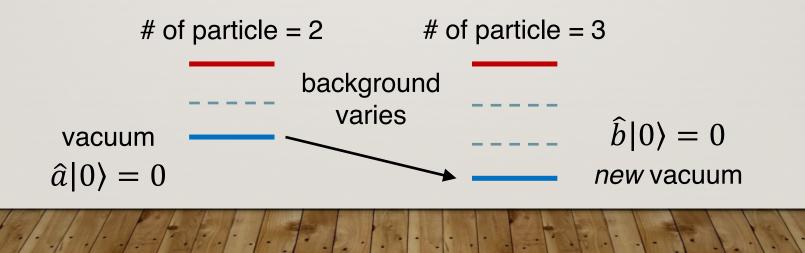
DYNAMICAL BACKGROUND & PARTICLE PRODUCTION

Background field varies

 \Rightarrow definition of "vacuum" changes

⇒ particle production

This inevitably occurs!



L. H. Ford, Phys. Rev. D 35 (1987) 2955. etc.

DYNAMICAL BACKGROUND & PARTICLE PRODUCTION

The more sharply background field varies,

the more particles are produced

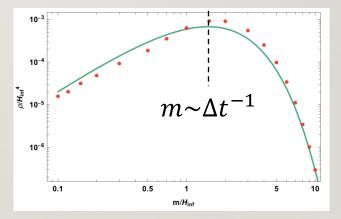
e.g. fermion production after inflation

$$ho \cong 2 imes 10^{-3} e^{-4m\Delta t} m^2 H_{inf}^2$$

m: fermion mass

 Δt : transition time scale from inflation

H_{inf} : Hubble parameter during inflation

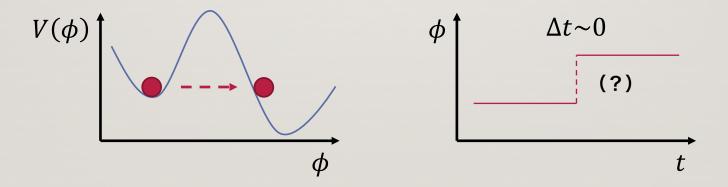


SH and J. Yokoyama, Phys. Lett. B 798 (2019) 135024.

QUANTUM TUNNELING & PARTICLE PRODUCTION

Quantum tunneling may seem "instantaneous" in real time \Rightarrow Does this mean $\Delta t \sim 0$ and **effective** particle production?

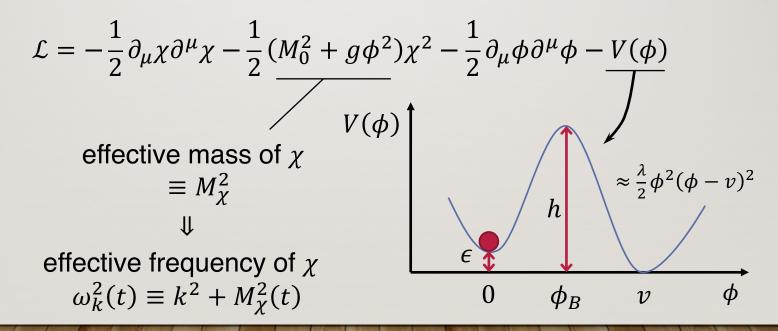
We may have to take particle production into account when discussing tunneling! *e.g.* **vacuum decay**



OUR MODEL

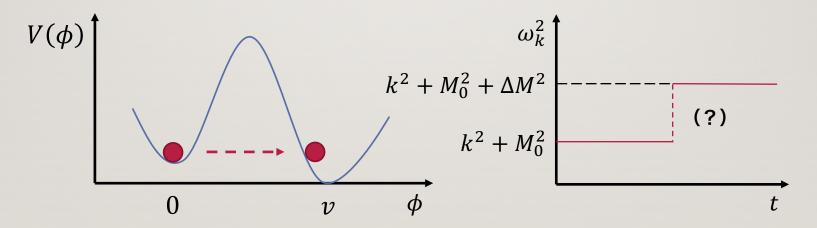
Background field: ϕ

Coupled field: $\chi \leftarrow$ to be produced



OUR MODEL

When ϕ tunnels from $\phi = 0$ to $\phi = v$, M_{χ}^2 changes from M_0^2 to $M_0^2 + gv^2 \equiv M_0^2 + \Delta M^2$



Tunneling of background field \Rightarrow Change of effective mass

EVOLUTION OF MODE FUNCTION

 χ 's mode function χ_k obeys the following EoM:

$$\frac{d^2\chi_k(t)}{dt^2} + \omega_k^2(t)\chi_k(t) = 0$$

The time-varying ω_k^2 **displaces** χ_k from the vacuum state $\chi_k(t_f) = \alpha_k \chi_{k,vac}(t_f) + \beta_k \chi_{k,vac}^*(t_f)$ \int $|\beta_k|^2 = \text{produced particle number density } n_k$

The solution of EoM $\chi_k(t)$ tells us amount of produced χ

EVOLUTION OF MODE FUNCTION

Therefore, essential problems are:

- How to describe $\omega_k(t)$ during tunneling of ϕ ?
- How to solve the EoM of χ_k under $\omega_k(t)$?

How to describe $\omega_k(t)$ during tunneling of ϕ ?

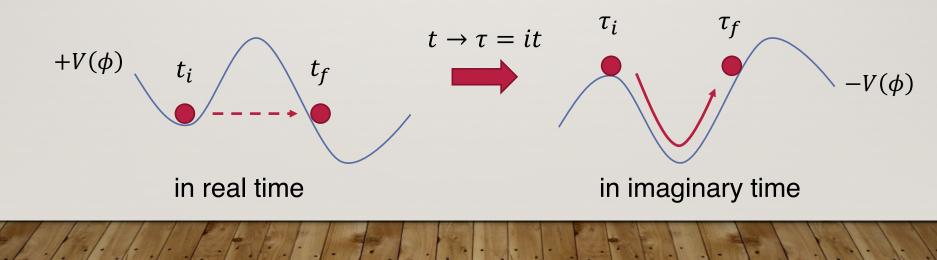
S. Coleman, Phys. Rev. D 15 (1977) 2929.

IMAGINARY TIME FORMALISM

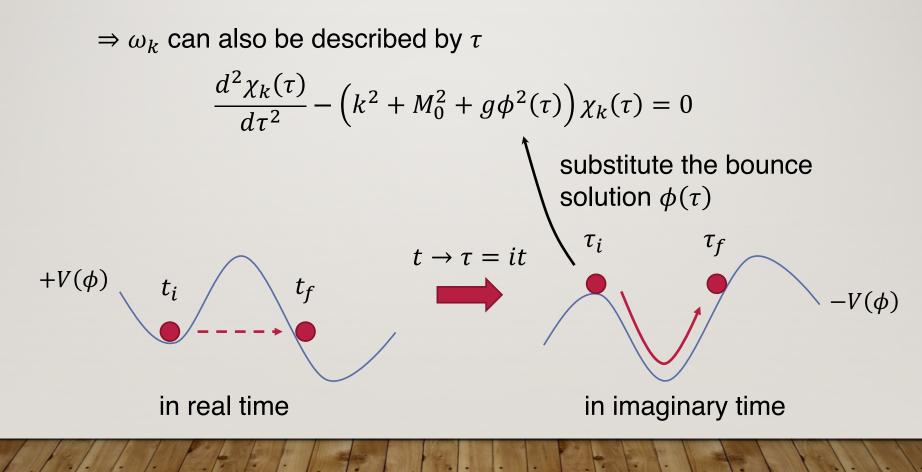
Quantum tunneling

 $\Downarrow \quad \text{Wick rotation } t \to \tau = it$

Semi-classical motion with upside-down potential $-V(\phi)$ in imaginary time τ (bounce solution)



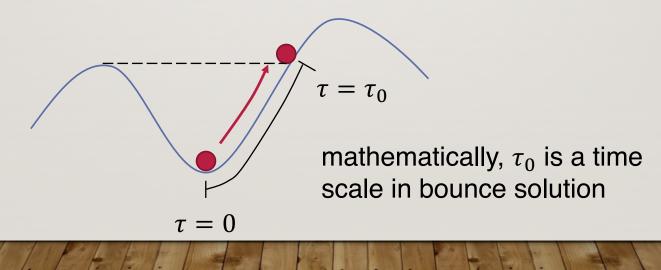
IMAGINARY TIME FORMALISM



IMAGINARY TIME FORMALISM

"Imaginary transition time scale τ_0 " gives a exponential suppression $e^{-4\omega_k\tau_0}$ on particle production (Rubakov 1984, Yamamoto+ 1995)

What is a *physical* meaning of this τ_0 ?

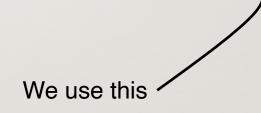


J. Blanco-Pillado+, JCAP 12 (2019) 001. etc.

REAL TIME FORMALISM

Quantum tunneling in real time

- Wigner function method (Hertzberg & Yamada 2019)
- Flyover vacuum decay (J. Blanco-Pillado+ 2019) ←



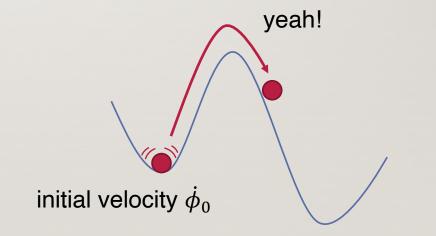
J. Blanco-Pillado+, JCAP 12 (2019) 001. etc.

FLYOVER VACUUM DECAY

Concept

 ϕ obtains initial velocity $\dot{\phi}_0$ from quantum fluctuation

 \Rightarrow If $\dot{\phi}_0 > \dot{\phi}_{th}$, ϕ semi-classically climbs over the barrier



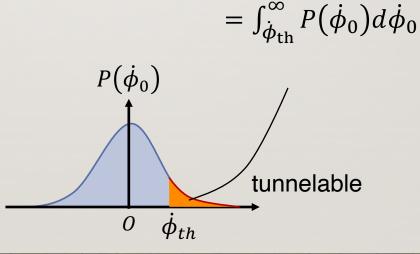
J. Blanco-Pillado+, JCAP 12 (2019) 001. etc.

FLYOVER VACUUM DECAY

Concept

Initial velocity $\dot{\phi}_0 \leftarrow \text{distribution function } P(\dot{\phi}_0)$

 \Rightarrow Tunneling rate is derived as **a probability of** $\dot{\phi}_0 > \dot{\phi}_{th}$



PROCEDURE

With this formalism, particle production is derived as

1. initial velocity $\dot{\phi}_0 + \text{EoM of } \phi \Rightarrow \text{background } \phi(t, \dot{\phi}_0)$ 2. $\phi(t, \dot{\phi}_0) + \text{EoM of } \chi_k \Rightarrow \text{ solution of EoM } \chi_k(t, \dot{\phi}_0)$ 3. $\chi_k(t, \dot{\phi}_0) \Rightarrow \text{ produced particle number density } n_k(\dot{\phi}_0)$ 4. $n_k(\dot{\phi}_0) + \text{ probability distribution of initial velocity } P(\dot{\phi}_0)$ $\Rightarrow \text{ expected value } \langle n_k \rangle (= \int n_k(\dot{\phi}_0) P(\dot{\phi}_0) d\dot{\phi}_0)$

How to solve the EoM of χ_k under $\omega_k(t)$?

N. Birrell and P. Davies, Quantum Fields in Curved Space (1984).

WKB APPROXIMATION

Exact solution of EoM \leftarrow almost impossible...

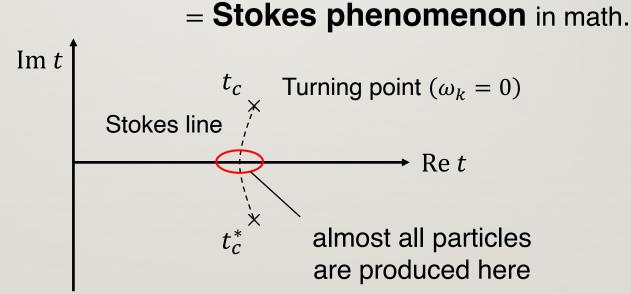
WKB approximation

$$\chi_{k}(t) = \frac{c_{1}}{\sqrt{2W_{k}}} \exp\left[-i\int^{t} W_{k}(t')dt'\right] + \frac{c_{2}}{\sqrt{2W_{k}}} \exp\left[+i\int^{t} W_{k}(t')dt'\right]$$

$$\left\{ \begin{array}{c} W_{k}^{(0)} = \omega_{k} \\ \left(W_{k}^{(n+1)}\right)^{2} & 2 & 1\left(W_{k}^{(n)\prime\prime} & \frac{3}{2}\left(W_{k}^{(n)\prime}\right)^{2}\right) \\ \text{But this is } divergent \text{ series} \\ \text{It can't include non-perturbative effect} \end{array} \right.$$

STOKES PHENOMENON METHOD

Particle production occurs mainly around **Stokes lines** connecting pairs of **turning points** t_c where $\omega_k(t_c) = 0$ in *complex* time



STOKES PHENOMENON METHOD

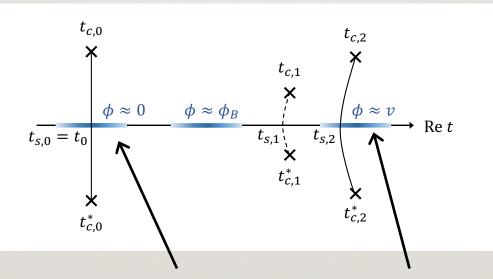
Stokes phenomenon tells us produced particle number density as

$$n_{k} \approx \left| \sum_{p} \exp\left(i \int_{t_{c_{p}}}^{t_{c_{p}}^{*}} \omega_{k}(t) dt \right) \exp\left(2i \int_{s_{1}}^{s_{p}} \omega_{k}(t) dt \right) \right|^{2}$$
particle production around interference between p-th Stokes line Stokes lines

Non-perturbative effect **included**! (Dabrowski & Dunne 2014)

STOKES PHENOMENON METHOD

Where are Stokes lines in our case?
 = When are χ particles produced?



When ϕ is around each vacuum (potential minimum)

RESULT

• How many χ particles are produced?

$$\langle n_k \rangle \approx \Gamma \left(\exp \left[-2\Delta \ln \left(\frac{512}{e^2} \Delta^2 \right) \sqrt{\frac{g}{\lambda}} \right] + \exp \left[-D\Delta^{1+\delta} \sqrt{\frac{g}{\lambda}} \right] \right)$$

Γ : decay rate $D(\approx 10.5), \delta(\approx 0.13)$: numerical factor $\Delta^2 = \omega_k^2 / \Delta M^2$

In reality, particle production is suppressed exponentially (or even stronger)

RESULT

Backreaction on vacuum decay (preliminary)

$$\Gamma \rightarrow \left(1 - 40\pi^3 \frac{\rho_{\chi}}{m_F}\right)\Gamma$$

Is this consistent with imaginary time formalism?

 \Rightarrow validity of real time formalism

 χ particles are produced

 $V(\phi)$ is lifted up by ρ_{χ}

 ρ_{χ}

SUMMARY

 Particle production induced by vacuum decay by using

real time formalism (flyover vacuum decay)

Stokes phenomenon method

• Backreaction on vacuum decay (preliminary)

Future work

- Backreaction (more detailed)
- Application to Higgs instability
- Play with Stoke phenomenon method!