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Data Analysis in COVID Days

Kipp Cannon and Catherine Beauchemin

August 17, 2020
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▶ We study light curves of supernovae to learn about their origins.

From Nature 401, 453–456, (1999).
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▶ We study varying structure in radio pulses from pulsars to learn
about the mechanisms of the source and of the interstellar medium.

From Ap.J. 787(2), 161, (2014)
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▶ We study the time-dependent brightness of stars to find and learn
about planets.

NASA Ames/T. Barclay



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

▶ We study the output of laser interferometers to find gravitational
waves.

GW150914 signal reconstruction
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▶ Here is a time series:

22 01
mar
2020

081522 01
apr

2020

081522 01
may
2020

081522 01
jun

2020

081522 01
jul

2020

081522 01
aug
2020

0815

0

102

103

103

103

D
ai

ly
co

u
n
ts

as
of

20
20

-0
8-

18
Japan

▶ What can we learn about the process that created this data?
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▶ The ingredients:
▶ A model or hypothesis about the nature of the underlying process.
▶ A model for the statistical properties of the noise.
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▶ The underlying process is a communicable infectious disease.
▶ New cases arise from pair-wise human interaction, not exposure to

an environmental agent (like asbestos, radiation).
▶ Human interactions are complicated. There are patterns (co-workers,

families, classmates, fellow commuters), but at the individual
person-to-person level there is also a great deal of randomness.

▶ Not everyone can catch a disease: e.g., some people might be
immune from previous exposure.

▶ Not everyone can transmit a disease: e.g., hospitalization isolates
the infected.

▶ Try a simple model: each sick person makes some number of
other people sick.
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▶ The number of new sick people each sick person creates is called the
“reproductive number”, R.

▶ This model‘s behaviour is very simple, the number of sick people is
given by

N(t) = N0R
t−t0

tinfectious (1)
where
▶ N(t) is the number of cases at time t,
▶ N0 is the initial number of sick people at time t0,
▶ and a sick person is infectious for a period tinfectious.

▶ If R > 1 the number of sick grows exponentially, if R < 1 the
number of sick decays exponentially, but it’s always exponential.

▶ Taking the logarithm of both sides:

lnN =

[
lnR

tinfectious

]
t +

[
lnN0 −

lnR
tinfectious

t0
]

(2)

which is, of course, the description of a straight line.
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lnN =

[
lnR

tinfectious

]
t +

[
lnN0 −

lnR
tinfectious

t0
]

▶ If we plot lnN (or N on a log scale) vs t we expect to see a straight
line.

▶ Changing public health measures, changing patterns of behaviour
(staying home from school, from work, avoiding restaurants and
bars, using alcohol sanitizer), should change R over time, therefore
we expect the slope to change over time.

▶ But always exponential: N grows or decays, but always exponentially.
▶ Let’s check.
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▶ Same data, log scale.
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▶ What can we learn?
▶ The data does appear to

be a sequence of
straight line segments.
▶ Our simple model

appears to be
sufficient to explain
the data piece-wise. 22 01
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▶ From a line segment we can learn when the number of sick was 1 (or
will be 1) but we cannot know R or tinfectious, only the combination
t−1
infectious lnR.

▶ If we can identify dates when the slope changes we might learn
something from those.

▶ We need to fit lines to the data: to minimize residuals, we need to
understand the noise.
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Noise Sources

▶ Poisson shot noise:
▶ When independent random events occur with some mean rate N, the

actual number of them that are observed within a given interval is a
Poisson-distributed random number. The standard deviation is

√
N.

▶ Reporting errors:
▶ Health units lose data, then “fix” their mistake by reporting the

cases later.
▶ Governments interfere with data collection for the purpose of

nationalistic propaganda.
▶ Periodic behaviour:

▶ No case reporting on weekends.
▶ People preferring to be tested on certain days of the week.
▶ ...
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Noise Sources

▶ Instead of generalizing the model to include the effects of periodicity
in the process, we treat it as noise.

▶ An easy way to reduce it is to replace the data with a moving
average. Our observations are

data = exponential + noise (3)

▶ Because the noise-free function is assumed to be exponential, we use
a moving time-symmetric (acausal) geometric mean: the underlying
function is invariant under this transformation, while the noise is
reduced.
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Japan, D(t) = 5% · C(t− 19 d)
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▶ Differences between observed case count, and 3-day moving
Gaussian geometric mean for Japan and Canada.

▶ In both cases, the results appear to be independent random variables
(no more correlations). The variance is time dependent, especially
for Canada, and larger than expected for a Poisson process, but we
can measure it and accommodate it.
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Maximum Likelihood Fit

▶ We use the algorithm described by V. Muggeo “Estimating
Regression Models with Unknown Break-Points”, Statist. Med.
2003; 22:3055–3071 (DOI: 10.1002/sim.1545).

▶ Solves for the pieces-wise linear function that minimizes the
weighted sum-of-square residuals.

▶ Requires the number of break points to be specified.
▶ To choose the number of segments, we use the Bayesian information

criterion to select the model with the greatest support.
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Japan, D(t) = 5% · C(t− 19 d)
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Interpretation
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▶ The grey region is Tokyo’s state of emergency.
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Summary

▶ There is little evidence that anything other than declaring a state of
emergency is an effective intervention in Japan.

▶ The case counts grew until the state of emergency, they fell
throughout, and immediately began growing again when it was lifted.

▶ If you remember the news announcing a “party rental room cluster”,
or a “Kabukicho bar cluster”, and blaming rising cases in Tokyo in
July on these, in fact the evidence does not support the hypothesis
of a series of large impulse source events: the data are consistent
with our assumption that each sick person makes some number of
other people sick, uniformly. Everyone is equally responsible for the
spread.

▶ There was certainly no change in July, the growth had started a
month before then.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Let’s do Another: USA
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United States, D(t) = 6% · C(t− 5 d)
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Let’s do Another: USA
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United States, D(t) = 6% · C(t− 5 d)
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Interpretation

▶ USA public health units originally reported data to the Centres for
Disease Control (CDC), and independent government agency.

▶ Public health units were ordered to cease sending data to the CDC,
and submit it only to the Department of Health and Human Services
(HHS).

▶ HHS is directly under the control of the White House via the
Secretary of Health and Human Services.

▶ The reporting procedure changed on July 15.
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Interpretation
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▶ Hmm ...
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Remarks

▶ What I have shown is a kinematic model: a description of the
observed data, not a model of the system that produced it.

▶ We can construct a dynamical model. The standard form are
“SEIR” models for the main states they assume exist:
▶ Susceptible
▶ Eclipsing (infected but not infectious)
▶ Infectious
▶ Resolved or removed (cured and now immune, or dead)

▶ Couplings and delays are defined, they can be linear or bilinear or
non-linear.

▶ Allow you to infer other information, like how many undetected
infected people are in the population, or how many unreported
deaths are occurring.


