Self-Interacting Dark Matter & Structure Formation (III) Hai-Bo Yu

University of California, Riverside

RESCEU Summer School, July 27-30, 2018 Review for Physics Reports: Tulin & HBY (2017)

Today's Plan

- Crisis on small scales: galactic scales, <10-100 kpc
 - Core vs. Cusp Diversity Cores in Clusters Missing Satellites Too-Big-To-Fail

spiral galaxies and galaxy clusters in the field

dwarf spheroidal galaxies in the Milky Way (Local Group)

- Additional topics
 - Halo shapes
 - Cosmological signatures/constraints
 - Direct detection and collider searches

From Simulations to Observations

Aquarius Project, Springel et al. (2008)

Bullock et al.

Missing Satellites Problem

Predicted: ~O(100) subhalos with V~10-30 km/s within its viral radius Observed: 11 by 1999, 15 SDSS satellites, expected more from LSST Expected to have a factor of ~5-20 more, due to faintness, limited sky coverage...

Feedback+Environment Effect?

Sawala et al. (2015)

Too-Big-to-Fail Problem

Boylan-Kolchin, Bullock, Kaplinghat (2011)

 $M_{1/2} = 3 G^{-1} \langle \sigma_{
m los}^2 \rangle r_{1/2}$ $V_{
m circ}(r_{1/2}) = \sqrt{3 \langle \sigma_{
m los}^2
angle} .$

subhalos in Andromeda, field dwarfs in Local Group, and field galaxies

Feedback+Environment Effect?

Strong feedback generates cores Wetzel et al. (2016) DM mass loss due to tidal stripping from the stellar disk FIRE simulations

Substructure in SIDM

CDM

σ/m~3 cm²/g (v~30 km/s)
σ/m~0.1 cm²/g (v~100 km/s)

 $\sigma/m=10 \text{ cm}^2/\text{g}$

- DM-only simulations, no baryons
- For $\sigma/m \sim 1 \text{ cm}^2/g$, the halo mass function does not change
- The minimal SIDM model does not solve the missing satellites problem (?!)

Vogelsberger, Zavala, Loeb (2012)

Addressing the TBTF Problem

To fully understand the dynamics, we need SIDM simulations with the stellar disk

Dot-dashed black: CDM (best fit)Valli & HBY (Nature Astronomy, 2017)Solid blue: SIDM (spatially varying stellar anisotropy)Dashed blue: SIDM (spatially constant stellar anisotropy)

Halo Shapes

- CDM halos are triaxial, Jing & Suto (2002)
- Dark matter self-interactions make the halo rounder

Tying SIDM to Baryons

• SIDM may follow the stellar distribution; halo morphology

SIDM density contour

with Kaplinghat, Keeley, Linden (2013)

A Milky-Way SIDM Model

Cosmological Constraints

• The mediator may dominate the energy density of the Universe

SM mediator mass: ~10 MeV φ SM A simple (super) model SM SM

Direct Detection

Direct Detection Constraints

$$\epsilon_{\gamma}F^{\mu\nu}\phi_{\mu\nu}$$

With Ren et al., the PandaX-II collaboration (PRL, 2018)

SIDM at Colliders

• Striking collider signals

WIMP

pp→Monojet+Missing Energy

With Ren, Tsai, Xu (in prep) Shepherd, Tait, Zaharijas (PRD 2009) An, Echenard, Pospelov, Zhang (PRL 2015) Tsai, Wang, Zhao (PRD 2015)

Cosmological Signatures

• The mediator has to decay to massless particles

- Damped dark matter matter power spectrum
- Additional massless degrees of freedom, CMB Stage-IV
- Lyman-alpha constraints

with Huo, Kaplinghat, Pan (PLB, 2017)

Production Mechanism

Three free parameters: m_X , m_{Φ} , $g_X(\alpha_X)$

magenta: symmetric DM

fix the coupling by the relic density

Narrow mass range: 10 MeV-300 MeV

gray: asymmetric DM

Large mass range

For given m_X , the stellar kinematics fixes both $g_X(\alpha_X)$ and m_{ϕ}

With Ran, Kaplinghat, Pan (PLB, 2017)

Gravothermal Catastrophe?

Balberg & Shapiro (2001)

with Essig, McDermott, Zhong (in prep)

Constraining Dissipative DM Scattering

 σ' / σ

with Essig, McDermott, Zhong (in prep)

Summary

- For dwarf spheroidal galaxies in the Milky Way, the environment effect becomes important.
- To fully address the issues (MS & TBTF) in the SIDM framework, we need to include both SIDM and baryon physics in simulations.
- The SIDM halo shape and the baryon distribution are correlated.
- SIDM has other novel signals in terrestrial experiments, cosmological and astrophysical observations.

Large scales: Λ SIDM~ Λ CDM Small scales: Λ SIDM> Λ CDM

Have a lot of fun. Thank you!