Self-Interacting Dark Matter & Structure Formation (II)

Hai-Bo Yu University of California, Riverside

RESCEU Summer School, July 27-30, 2018 Review for Physics Reports: Tulin & HBY (2017)

The Diversity Problem

Colored bands: hydrodynamical simulations of ΛCDM

Addressing the Diversity Problem

• DM self-interactions thermalize the inner halo

DM-dominated galaxies: Lower the central density and the circular velocity

Isothermal $\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_X/\sigma_0^2}$ distribution

with Kamada, Kaplinghat, Pace (PRL 2016)

Addressing the Diversity Problem

• DM self-interactions tie DM together with baryons

Thermalization leads to higher DM density due to the baryonic influence

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_{\rm B}/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (PRL 2016)

Solving the Diversity Problem

True SIDM profile with the baryonic influence

Different baryon distributions, thermalization links DM to baryon distributions

High surface brightness galaxies (NGC 6503): small and dense core Low surface brightness galaxies (UGC 128): large and shallow core

30 galaxies V_{max}~25-300 km/s

with Kamada, Kaplinghat, Pace (PRL, 2016)

Solving the Diversity Problem

Scatter in the halo concentration-mass relation

with Kamada, Kaplinghat, Pace (PRL, 2016)

- Scatter in the halo concentration-mass relation ($\sim 2\sigma$)
- Baryon distribution
- SIDM thermalization ties DM and baryon distributions

Isolated N-body simulations: with Creasey, Sameie, Sales et al. (MNRAS 2016)

Baryonic Feedback

gas density threshold weak/smooth feedback: 0.1-1 atoms/cm³ no cores

Strong/violent feedback: 100-1000 atoms/cm³ ~1kpc cores

Navarro, Eke, Frenk (1996)

Strong Feedback vs SIDM

From Tao Ren

Gray: NIHAO CDM simulations

"strong/violent" feedback

```
Observed scatter: \sim 4 (3\sigma away)
Simulations: \sim 2
```

Solid lines: SIDM fits

(~2 σ in the c₂₀₀-M₂₀₀ relation)

Hydro SIDM Simulations

With Robertson, Massey, Eke, Tulin, et al. (MNRAS Letters, 2017)

- The SIDM distribution is sensitive to the final baryon distribution
- But, it is not sensitive to the formation history

Hydro SIDM vs CDM

With Robertson, Massey, Eke, Tulin, et al. (MNRAS Letters, 2017)

with Ren, Kwa, Kaplinghat (in prep)

The worst fit, $\chi^2/d.o.f \sim 44$, but it is completely driven by the tiny error bars

Radial Acceleration Relation

$$g_{
m tot} pprox \sqrt{g_{
m bar}g_{\dagger}}$$

when $g_{
m bar} < g_{\dagger}$

MOND, Milgrom's law (1983)

Reproduced, see McGaugh, Lelli, Schombert (PRL 2016)

135 galaxies "Uniformity"

Uniformity in SIDM

McGaugh, Lelli, Schombert (PRL 2016)

135 galaxies

With Ren, Kwa, Kaplinghat (in prep)

Properties of the Hosting Halos

 $(\rho_0, \sigma_0) \leftrightarrow (\rho_s, r_s) \leftrightarrow (V_{\max}, r_{\max})$

Gray: 20 band predicted in hierarchical structure formation Dutton & Maccio (2014)

The origin of the acceleration scale:

 $r_{\rm max} = 27 \; {\rm kpc} (V_{\rm max}/100 \; {\rm km/s})^{1.\bar{4}}$

$$a|_{r=0} \approx 1.0 \times 10^{-10} \text{ m/s}^2 \left(\frac{V_{\text{max}}}{240 \text{ km/s}}\right)^{0.6}$$

~95% galaxies can be fitted within 2σ

 $a|_{r=0} \equiv GM/r^2|_{r\to 0} \approx 2\pi G\rho_s r_s \approx 2\pi V_{\text{max}}^2/(1.26r_{\text{max}})$

with Ren, Kwa, Kaplinghat (in prep)

Baryon-Halo Relations

Not 4, predicted in MOND

SIDM vs MOND

- Both SIDM and MOND fits have the disk mass-to-light ratio peaked around 0.5M $_{\odot}/L_{\odot}$.
- For 77% of the galaxies, the SIDM fits are better than the MOND ones.
- SIDM explains both the diversity and the uniformity

With Ren, Kwa, Kaplinghat (in prep)

Galaxy Clusters

Seven well-resolved galaxy clusters

• CDM halos contain more DM in the central regions than needed

SIDM from Dwarfs to Clusters

Galaxies: $M_{halo} \sim 10^9 - 10^{12} M_{\odot}$

Clusters: $M_{halo} \sim 10^{14} - 10^{15} M_{\odot}$

Merging Clusters: $< \sim 2 \text{ cm}^2/\text{g}$

Measuring Dark Matter Mass

Self-scattering kinematics determines SIDM mass

with Feng, Kaplinghat (PRL 2012)

Particle Physics of SIDM

• Familiar examples in the visible sector

Dark Matter "Colliders"

Dwarf galaxies

"B-factory" (v~30 km/s)

Observations on all scales

MW-size galaxies

"LEP" (v~200 km/s) Self-scattering kinematics Clusters

"LHC" (v~1000 km/s)

Measure particle physics parameters σ_X, m_X, g_X

Particle Properties

Positive observations	σ/m	$v_{ m rel}$	Observation	Refs.
Cores in spiral galaxies	$\gtrsim 1~{ m cm^2/g}$	$30-200~{ m km/s}$	Rotation curves	[77, 93]
(dwarf/LSB galaxies)				
Too-big-to-fail problem				
Milky Way	$\gtrsim 0.6~{ m cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[87]
Local Group	$\gtrsim 0.5~{ m cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion	[88]
Cores in clusters	$\sim 0.1 \ {\rm cm^2/g}$	$1500 \ \mathrm{km/s}$	Stellar dispersion, lensing	[93, 103]
A 111 2007 1-11	1 5 2 /	1500 1 /	DM colours offect	[104]
Abeli 3027 subnulo merger	$\sim 1.0 \mathrm{cm} /\mathrm{g}$	1000 KIII/S	Divi-galaxy offset	
Abell 520 cluster merger	$\sim 1~{ m cm^2/g}$	$2000-3000~\rm km/s$	DM-galaxy offset	[105, 106, 107]

Constraints

Halo shapes/ellipticity	$\lesssim 1~{ m cm^2/g}$	$1300 \ \mathrm{km/s}$	Cluster lensing surveys	[86]
Substructure mergers	$\lesssim 2~{ m cm^2/g}$	$\sim 500-4000~\rm km/s$	DM-galaxy offset	[92, 108]
Merging clusters	$\lesssim {\rm few} \; {\rm cm}^2/{\rm g}$	$2000-4000~\rm km/s$	Post-merger halo survival	Table II
			(Scattering depth $\tau < 1$)	
Bullet Cluster	$\lesssim 0.7~{ m cm^2/g}$	$4000 \ \mathrm{km/s}$	Mass-to-light ratio	[81]

Tulin & HBY (2017)

Summary

- SIDM provides a unified explanation to the stellar kinematics from dwarf galaxies to galaxy clusters.
- It simultaneously explains the diversity and the uniformity of the galactic rotation curves.
- There is a strong hint that the inner halos are thermalized.

