Self-Interacting Dark Matter & Structure Formation (I)

Hai-Bo Yu University of California, Riverside

RESCEU Summer School, July 27-30, 2018 Review for Physics Reports: Tulin & HBY (2017)

Dark Matter

The Standard Model of Cosmology

Standard model of modern cosmology

Standard model of modern particle physics

The WIMP Model

Dark matter candidate:

• Add a new massive particle X

• Interacts with us through the weak interaction

Weakly-Interacting Massive Particle (WIMP)

"WIMP Miracle"

The WIMP is a typical collisionless cold dark matter candidate

ACDM on Large Scales

works very well, >O(100) kpc

Overall Predictions on Galactic Scales

Illustris Project, Vogelsberger et al. (2014)

Produce a variety of galaxy types consistent with observations

Detailed Predictions on Small Scales

Aquarius Project, Springel et al. (2008)

Rich substructure!

Universal Density Profile

Aquarius Project, Springel et al. (2008)

the Navarro-Frenk-White (NFW) profile (1996)

$$\frac{\rho_s}{r/r_s(1+r/r_s)^2}$$

 $ho_{
m s}$ and $m r_{
m s}$ are strong correlated

the concentration-mass relation

Specify a halo with one parameter+scatter

CDM-only cosmological simulations

Small-Scale Issues

- Crisis on small scales: galactic scales, <10-100 kpc
 - Core vs. Cusp Diversity Missing Satellites Too-Big-To-Fail
 - Solutions

Observational issues Baryon physics New physics

Core vs Cusp Problem

DM-dominated systems (dwarfs, LSBs)

$$V_{\rm circ}(r) = \sqrt{V_{\rm halo}(r)^2 + \Upsilon_* V_{\rm star}(r)^2 + V_{\rm gas}(r)^2} \qquad \overline{V_{\rm halo}(r)} = \sqrt{GM_{\rm halo}(r)/r}$$

$$\frac{\rho_s}{r/r_s(1+r/r_s)^2}$$

Flores, Primack (1994), Moore (1994)...

The Diversity Problem

The Diversity Problem

Colored bands: hydrodynamical simulations of ΛCDM

A Big Challenge

The unexpected diversity of dwarf galaxy rotation curves

Kyle A. Oman^{1,*}, Julio F. Navarro^{1,2}, Azadeh Fattahi¹, Carlos S. Frenk³, Till Sawala³, Simon D. M. White⁴, Richard Bower³, Robert A. Crain⁵, Michelle Furlong³, Matthieu Schaller³, Joop Schaye⁶, Tom Theuns³

¹ Department of Physics & Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada

² Senior ClfAR Fellow

³ Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom

⁴ Max-Planck Institute for Astrophysics, Garching, Germany

⁵ Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom

⁶ Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

The diversity is expected if dark matter has strong self-interactions

Self-Interacting Dark Matter

• Self-interactions thermalize the inner halo, not the outer halo

Modelling SIDM Halos

with Kamada, Kaplinghat, Pace (PRL 2016)

Modelling SIDM Halos $\rho_{\rm iso}(R,z) = \rho_0 \exp\left(\left[\Phi_{\rm tot}(0,0) - \Phi_{\rm tot}(R,z)\right] / \sigma_{\rm v0}^2\right)$ $\nabla^2 \Phi_{\text{tot}}(R, z) = 4\pi G[\rho_{\text{iso}}(R, z) + \rho_{\text{b}}(R, z)]$ $ho_{
m b}(R,z) = \sum_0 \exp(-R/R_{
m d})\delta(z)$ $ho_{
m b}(R,z) = \int_0 \exp(-R/R_{
m d})\delta(z)$ Scale radius Surface density of the stellar distribution

Numerical templates based on the two dimensionless parameters $a \equiv 8\pi G \rho_0 R_d^2/(2\sigma_{v0}^2)$ and $b \equiv 8\pi G \Sigma_0 R_d/(2\sigma_{v0}^2)$

Addressing the Diversity Problem

• DM self-interactions thermalize the inner halo

DM-dominated galaxies: Lower the central density and the circular velocity

Isothermal $\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_X/\sigma_0^2}$ distribution

with Kamada, Kaplinghat, Pace (PRL 2016)

Addressing the Diversity Problem

• DM self-interactions tie DM together with baryons

Thermalization leads to higher DM density due to the baryonic influence

$$\rho_X \sim e^{-\Phi_{\rm tot}/\sigma_0^2} \sim e^{-\Phi_{\rm B}/\sigma_0^2}$$

with Kamada, Kaplinghat, Pace (PRL 2016)

Solving the Diversity Problem

True SIDM profile with the baryonic influence

Different baryon distributions, thermalization links DM to baryon distributions

High surface brightness galaxies (NGC 6503): small and dense core Low surface brightness galaxies (UGC 128): large and shallow core

30 galaxies V_{max}~25-300 km/s

with Kamada, Kaplinghat, Pace (PRL, 2016)

Solving the Diversity Problem

Scatter in the halo concentration-mass relation

with Kamada, Kaplinghat, Pace (PRL, 2016)

- Scatter in the halo concentration-mass relation ($\sim 2\sigma$)
- Baryon distribution
- SIDM thermalization ties DM and baryon distributions

Isolated N-body simulations: with Creasey, Sameie, Sales et al. (MNRAS 2016)

Strong Feedback vs SIDM

Santos-Santos et al. (2017)

Gray: NIHAO CDM simulations

"strong/violent" feedback

Observed scatter: ~ 4 (3 σ away) Simulations: ~ 2

From Tao Ren

Solid lines: SIDM fits

(~2 σ in the c₂₀₀-M₂₀₀ relation)

