Definitions

- Stars: $\mathrm{M}>0.07 \mathrm{M}_{\mathrm{s}}$

Burn H

- cosmic composition $(\mathrm{H}+\mathrm{He})$
- Brown dwarfs: $\mathrm{M}<0.07 \mathrm{M}_{\mathrm{s}}$
- degenerate
- cosmic composition $(\mathrm{H}+\mathrm{He})$
- Planets

No Burning

- orbit stars
- not cosmic composition (more metals)
- form in gas/dust disks
- Dwarf planets
- Pluto, Eris, Ceres
$2003 \mathrm{EL}_{61} \quad 2005 \mathrm{FY}_{\mathrm{g}} \quad$ Sedna Oreus Quaoar $2002 \mathrm{TX}_{300}$

Definition?

Burrows et al. 1997 ApJ 491856

Questions

- What set the number of solar system planets?
- How long did it take them to form?
- Why are their orbits circular and coplanar?
- What set the planetary spins?
- Binaries in the Kuiper Belt and new moons.
- Binary Planets?
- What happens after planet formation?
- When and how did the Oort cloud form?
- How long do debris disks live?

Amazing Observations

Disks - Results: 1-10Myr lifetime

Dissipation of Inner Circumstellar (Accretion) Disks Around Young Low-Mass Stars

Eccentricities \& Periods

Theories for strange orbits

Disk Migration

Planet-Planet interaction - Migration and e •

Does disk excite eccentricities?

Tides?

Transits - Radius Mass Relation - Surprise

Inflated Hot Jupiters - Theories

- Why are hot (short period) Jupiters inflated?
- Possible for hot objects only.
- 1% inflation for each 1,000 degrees.
- Planets form with 100,000 degrees.
- Short cooling time. Why they did not get cold?
- Solar flux slows cooling. Not sufficient.
- Internal heating!

Minimum Mass Solar Nebula

Geometric Accretion

- If collision cross section is geometric

$$
\text { collision rate }=n \pi R^{2} v
$$

- Scale height $\mathrm{h} \sim \mathrm{v} / \Omega$
$-\mathrm{n} \propto \sigma / \mathrm{h}$
$\begin{aligned} & \text { - In terms of surface density: } \\ & \quad \text { - Independent of velocity }\end{aligned} \frac{d R}{d t}=\frac{\sigma \Omega}{8 \rho} \approx 3 \frac{\mathrm{~cm}}{\mathrm{yr}}(a / A U)^{-3}$
- For Minimum Mass Solar Nebula (MMSN):
- Earth (6,400km) 10^{8} yr
- Jupiter's core $\quad 10^{9} \mathrm{yr}$
- Neptune $(25,000 \mathrm{~km}) \quad 10^{12} \mathrm{yr}$

Need Gravitational Focusing

- Larger collision cross section

	size (km)	geometric time	required time (yr)	implied eccentricity
Earth	6,400	$10^{8} \mathrm{yr}$	$<10^{8}$	$\mathrm{e}<1$
Jupiter's core	$10,000 ?$	$10^{9} \mathrm{yr}$	$<10^{7}$	$\mathrm{e}<0.1$
Neptune	25,000	$10^{12} \mathrm{yr}$	$10^{7}<\mathrm{t}<10^{9}$	$0.03<\mathrm{e}<0.4$

Planet Formation

Early Times: Runaway Accretion

- Without gravitational focusing

$$
\frac{1}{R} \frac{d R}{d t} \propto \frac{1}{R}
$$

- $3 \mathrm{~cm} /$ year @ 1AU
- too slow@30AU
- Bodies tend to become of equal size
- Orderly growth
- With focusing

$$
\frac{1}{R} \frac{d R}{d t} \propto \frac{1}{R}\left(\frac{\mathrm{v}_{e s c}}{\mathrm{v}}\right)^{2} \neq R^{+1}
$$

- Few large bodies become larger than their peers.
- Runaway accretion

Physical Processes

- Setup: many small bodies, few big bodies

Disk Effects

- Hill sphere
- Tidal effects from the Sun
- Sets a minimum drift velocity
- Sets the maximum binary separation
- Viscous stirring
- Radial and tangential velocity are coupled - eccentricity
- Even elastic deflections increase velocity dispersion
- Results in much faster heating: temperature doubles in one deflection timescale

Physical Processes: velocities

- Setup: many small bodies, few big bodies

From Clean to Dirty

$h / r=10^{-6}$

$h / r=\delta \approx 1 / 4$

Late Times: Oligarchic Growth

"Classical" oligarchy:

- Big bodies heat their own food
\Rightarrow larger u around bigger bodies
\Rightarrow bigger bodies grow more slowly
\Rightarrow big bodies are:
equal mass,
uniformly spaced
- Number of big bodies decreases as they grow
More refined oligarchy - battles:
- Super Hill - win by competition
- Sub Hill - large-large accretion
- Thin disk - No sustained Oligarchy

End of Oligarchy: Isolation

- Definition:
- A large body has all the mass in annulus of $\sim 5 \mathrm{R}_{\mathrm{H}}$

$$
\begin{aligned}
M_{i s o} & =(2 \pi a)\left(5 R_{H}\right) \Sigma \\
M_{i s o} / M_{*} & =6.5\left(M_{d i s k} / M_{*}\right)^{3 / 2} \\
M_{d i s k} / M_{*} & =\left(M_{i s o} / M_{*}\right)^{2 / 3} / 3.5
\end{aligned}
$$

- For earth region
- Use mass of disk
- $\mathrm{N} \sim 50=>$ GIANT IMPACTS
- For outer solar system
- Use known $M_{\text {iso }}$
- x5 Minimum mass solar nebula
- $\mathrm{N} \sim 5$

Numerical N-body Simulation

- New N-body code
- Accretion
- Dynamical friction
- Questions:
Σ / σ at transition.
- Are all planets excited?
- Timescale
- How many survivors?

Beginning of Oligarchy

- Radius of circle $=$ Hill sphere ~ 3000 R

End of Oligarchy

- Radius of circle $=$ Hill sphere ~ 3000 R
- At end of oligarchy $\Sigma \sim \sigma, \mathrm{v} \sim \mathrm{V}_{\mathrm{H}}$

Venus \& Earth: Beyond Isolation

- $\mathrm{V}_{\text {esc }}<\mathrm{V}_{\text {orbit }}$ ejection unlikely - MMSN sufficient
- Collisions
- Formation on geometric timescale (100 Myr)
- Giant impacts!

4, 000 km

Summary

- Planetesimals Impacts \& Giant impact are expected.
- Strange planets w/extended atmospheres: Kepler 11
- Evidence for older \& newer magma: implies several atmospheric losses.

What should we find out

- What happens to atmospheres during impacts?
- Giant vs. small (planetesimals) impacts
- Is it all consistent?

Uranus \& Neptune = End of Oligarchy

- Fast formation of Uranus \& Neptune ($<10 \mathrm{Myr}$) if small bodies are very small ($<1 \mathrm{~m}$)
- In cold accretion with MMSN:

- Observed:

Uranus \& Neptune: Isolation

- Isolation when $\Sigma \sim \sigma$.
- we assume $u \sim v_{H}$

$$
T_{\text {isolation }} \sim \Omega^{-1} \frac{\alpha \rho R}{\sigma} \sim 10 \text { million years }
$$

Uranus \& Neptune: Ejection

- After <10 million years, $\Sigma>\sigma$
- Heating $>$ Cooling \Rightarrow runaway heating
- Planets are ejected $\mathrm{v}_{\text {esc }}>\mathrm{v}_{\text {orbit }}$, collisions unlikely.

$$
T_{\text {eject }} \sim \frac{1}{10} \Omega^{-1}\left(\frac{M_{\odot}}{M_{\text {Neptune }}}\right)^{2} \sim \text { billion years }
$$

Uranus \& Neptune: required mass

- Planets are ejected $\mathrm{v}_{\text {esc }}>\mathrm{v}_{\text {orbit }}$, collisions unlikely.
- Uranus \& Neptune already form at end of oligarchy ($<10 \mathrm{Myr}$).
- About 5 x MMSN is needed. Otherwise
- Mass of individual objects too small.
- Ejection too long.

Uranus \& Neptune: regularization

- Only a few remaining bodies (Uranus \& Neptune)
- No Chaos = no heating - sets \# of planets
- Cooled by remaining small bodies (explains current small eccentricity)

Collide or Eject?

$$
\begin{gathered}
\frac{V_{e s c}}{V_{\text {orbit }}} \sim \alpha^{-3 / 2}\left(\frac{\sigma}{\rho a}\right)^{1 / 3} \sim \begin{cases}0.16 & a=1 \mathrm{AU} \\
3 & a=25 \mathrm{AU}\end{cases} \\
V_{e s c}=V_{\text {orb }} \quad \text { at } \quad a \sim 3 A U
\end{gathered}
$$

a <3 AU

Collision

$\mathrm{a}>3 \mathrm{AU}$
Ejection

Orbital Regularization

- Eccentricity decays due to leftover small bodies.
- Initial timescale $=$ ejection $($ outer $)$ or collision (inner) timescale
- Gas effects?
- Could have helped in cooling the small bodies during oligarchy
- Unlikely to be present at the final stages
- 100Myr for inner solar system
- $10 \mathrm{Myr}-1 \mathrm{Gyr}$ after ejection in outer solar system
- Must rely on small bodies.
- Residual mass (of small bodies) during regularization?
- Of order the initial mass in outer solar system
- Uncertainties: separation and instability onset
- Perhaps somewhat smaller in inner solar system
- delicate balance between accretion and shattering

