Definitions

• Stars: $M > 0.07 M_s$

Burn H

- cosmic composition (H+He)
- Brown dwarfs: $M < 0.07 M_s$
 - degenerate
 - cosmic composition (H+He)
- Planets
 - orbit stars
 - not cosmic composition (more metals)
 - form in gas/dust disks
- Dwarf planets
 - Pluto, Eris, Ceres

2003 EL₆₁ 2005 FY₉ Sedna Orcus Quaoar 2002 TX₃₀₀ Dwarf planets 2002 AW₁₉₇ Varuna Ixion Vesta Pallas Hygiea

No Burning

No Burning

Definition ?

Questions

- What set the number of solar system planets?
- How long did it take them to form?
- Why are their orbits circular and coplanar?
- What set the planetary spins?

- Binaries in the Kuiper Belt and new moons.
- Binary Planets?
- What happens after planet formation?
- When and how did the Oort cloud form?
- How long do debris disks live?

Amazing Observations

Disks - Results: 1-10Myr lifetime

Dissipation of Inner Circumstellar (Accretion) Disks Around Young Low-Mass Stars

Giant planet formation must be fast!

Eccentricities & Periods

Theories for strange orbits

- Disk Migration •
- Planet-Planet interaction Migration and e
 - Does disk excite eccentricities?
 - Tides? •

Inflated Hot Jupiters - Theories

- Why are hot (short period) Jupiters inflated?
- Possible for hot objects only.
- 1% inflation for each 1,000 degrees.
- Planets form with 100,000 degrees.
- Short cooling time. Why they did not get cold?
- Solar flux slows cooling. Not sufficient.
- Internal heating!

Geometric Accretion

- If collision cross section is geometric $collision rate = n\pi R^2 v$
- Scale height $h \sim v/\Omega$ - $n \propto \sigma/h$
- In terms of surface density: - Independent of velocity

$$\frac{dR}{dt} = \frac{\sigma\Omega}{8\rho} \approx 3\frac{cm}{yr}(a/AU)^{-3}$$

- For Minimum Mass Solar Nebula (MMSN):
 - Earth (6,400km) 10⁸ yr
 - Jupiter's core 10⁹ yr
 - Neptune (25,000km) 10¹² yr

	size	geometric	required time	implied
	(km)	time	(yr)	eccentricity
Earth	6,400	10 ⁸ yr	<108	e<1
Jupiter's core	10,000?	109 yr	<107	e<0.1
Neptune	25,000	10 ¹² yr	$10^{7} < t < 10^{9}$	0.03 <e<0.4< td=""></e<0.4<>

חאוריות ליצירת פלנטות Planet Formation

Early Times: Runaway Accretion

• Without gravitational focusing

$$\frac{1}{R}\frac{dR}{dt} \propto \frac{1}{R}$$

- 3 cm/year @ 1AU
- too slow @ 30 AU
- Bodies tend to become of equal size
- Orderly growth
- With focusing

$$\frac{1}{R}\frac{dR}{dt} \propto \frac{1}{R} \left(\frac{\mathbf{v}_{esc}}{\mathbf{v}}\right)^2 \propto R^{+1}$$

- Few large bodies become larger than their peers.
- Runaway accretion

Physical Processes

• Setup: many small bodies, few big bodies

Disk Effects

• Hill sphere

- Tidal effects from the Sun
- Sets a minimum drift velocity
- Sets the maximum binary separation
- Viscous stirring
 - Radial and tangential velocity are coupled eccentricity
 - Even elastic deflections increase velocity dispersion
 - Results in much faster heating: temperature doubles in one deflection timescale

Physical Processes: velocities

• Setup: many small bodies, few big bodies

From Clean to Dirty

 $h/r = 10^{-6}$

h/r = 1/30

 $h/r = \delta \approx 1/4$

Late Times: Oligarchic Growth

"Classical" oligarchy:

- Big bodies heat their own food

 ⇒ larger u around bigger bodies
 ⇒ bigger bodies grow more slowly
 ⇒ big bodies are:

 equal mass,
 uniformly spaced
- Number of big bodies decreases as they grow

More refined oligarchy - battles:

- Super Hill win by competition
- Sub Hill large-large accretion
- Thin disk No sustained Oligarchy

End of Oligarchy: Isolation

- Definition:
 - A large body has all the mass in annulus of $\sim 5R_{\rm H}$

$$M_{iso} = (2\pi a)(5R_H)\Sigma$$

$$M_{iso}/M_* = 6.5(M_{disk}/M_*)^{3/2}$$

$$M_{disk}/M_* = (M_{iso}/M_*)^{2/3}/3.5$$

- For earth region
 - Use mass of disk
 - $N \sim 50 \implies$ GIANT IMPACTS
- For outer solar system
 - Use known M_{iso}
 - x5 Minimum mass solar nebula
 - N~5

Numerical N-body Simulation

Beginning of Oligarchy

• Radius of circle = Hill sphere ~ 3000 R

End of Oligarchy

- Radius of circle = Hill sphere ~ 3000R
- At end of oligarchy $\Sigma \sim \sigma \;,\; v {\sim} V_{\rm H}$

Venus & Earth: Beyond Isolation

- $V_{esc} < V_{orbit}$ ejection unlikely MMSN sufficient
- Collisions
- Formation on geometric timescale (100 Myr)

Summary

- Planetesimals Impacts & Giant impact are expected.
- Strange planets w/extended atmospheres: Kepler 11
- Evidence for older & newer magma: implies several atmospheric losses.

What should we find out

- What happens to atmospheres during impacts?
- Giant vs. small (planetesimals) impacts
- Is it all consistent?

Uranus & Neptune = End of Oligarchy

- Fast formation of Uranus & Neptune (<10 Myr) if small bodies are very small (<1 m)
- In cold accretion with MMSN:

• Observed:

Uranus & Neptune: Isolation

- Isolation when $\Sigma \sim \sigma$.
- we assume $u \sim v_H$

$$T_{\rm isolation} \sim \Omega^{-1} \frac{\alpha \rho R}{\sigma} \sim 10$$
 million years

Uranus & Neptune: Ejection

- After <10 million years, $\Sigma > \sigma$
- Heating > Cooling ⇒ runaway heating
- Planets are ejected $v_{esc} > v_{orbit}$, collisions unlikely.

Uranus & Neptune: required mass

- Planets are ejected $v_{esc} > v_{orbit}$, collisions unlikely.
- Uranus & Neptune already form at end of oligarchy (<10Myr).
- About 5 x MMSN is needed. Otherwise
 - Mass of individual objects too small.
 - Ejection too long.

Uranus & Neptune: regularization

- Only a few remaining bodies (Uranus & Neptune)
- No Chaos = no heating **sets # of planets**
- Cooled by remaining small bodies (explains current small eccentricity)

Collide or Eject?

$$\frac{V_{esc}}{V_{orbit}} \sim \alpha^{-3/2} \left(\frac{\sigma}{\rho a}\right)^{1/3} \sim \begin{cases} 0.16 & a = 1 \text{AU} \\ 3 & a = 25 \text{AU} \end{cases}$$

$$V_{esc} = V_{orb}$$
 at $a \sim 3AU$

a>3AU Ejection

a<3AU Collision

Orbital Regularization

- Eccentricity decays due to leftover small bodies.
 - Initial timescale = ejection (outer) or collision (inner) timescale
- Gas effects?
 - Could have helped in cooling the small bodies during oligarchy
 - Unlikely to be present at the final stages
 - 100Myr for inner solar system
 - 10Myr-1Gyr after ejection in outer solar system
 - Must rely on small bodies.
- Residual mass (of small bodies) during regularization?
 - Of order the initial mass in outer solar system
 - Uncertainties: separation and instability onset
 - Perhaps somewhat smaller in inner solar system
 - delicate balance between accretion and shattering