Cosmic Particles in the Multi-Messenger Era

Kohta Murase

Penn State University

Multi-Messenger Implications

Multi-Messenger Cosmic Particle Backgrounds

Energy budgets are all comparable (a few x 10⁴³ erg Mpc⁻³ yr⁻¹)

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Fate of High-Energy Gamma Rays

$$\pi^0 \rightarrow \gamma + \gamma$$

 $p + \gamma \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 1:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (4/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$ $p + p \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 2:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (2/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$

>TeV γ rays interact with CMB & extragalactic background light (EBL)

$$\gamma + \gamma_{\text{CMB/EBL}} \rightarrow e^+ + e^-$$
 ex. $\lambda_{\gamma\gamma}$ (TeV) ~ 300 Mpc
 $\lambda_{\gamma\gamma}$ (PeV) ~ 10 kpc ~ distance to Gal. Center

Fate of High-Energy Gamma Rays

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Neutrino-Gamma Connection?

- Generic power-law spectrum $\epsilon Q_\epsilon \propto \, \epsilon^{2\text{-s}}$, transparent to GeV-TeV γ

• s_v<2.1-2.2 (for extragal.); insensitive to evolution & EBL models

- contribution to diffuse sub-TeV γ: >30%(SFR evol.)-40% (no evol.)
- $s_v < 2.0$ for nearly isotropic Galactic emission (e.g., Galactic halo)

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple Fermi acc. spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple Fermi acc. spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Cosmic-Ray Reservoirs

Example: Galaxy Groups and Clusters

- Intracluster gas density (known)
 n~10⁻⁴ cm⁻³, a fewx10⁻² cm⁻³ (center)
- CR accelerators active galactic nuclei accretion shocks (massive clusters) galaxy/cluster mergers

AGN jet luminosity density $Q_{\rm cr} \sim 3.2 \times 10^{46} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{j,45} \rho_{{\rm GC},-5}$

cluster luminosity density $Q_{\rm cr} \sim 1.0 \times 10^{47} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{{\rm ac},45.5} \rho_{{\rm GC},-5}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{int} \simeq 0.76 \times 10^{-2} \ g\bar{n}_{-4} (t_{int}/2 \ \text{Gyr})$

$$E_{\nu}^{2}\Phi_{\nu_{i}} \sim 10^{-9} - 10^{-8} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$$

Neutrino-Gamma-UHECR Connection?

Grand-unification of neutrinos, gamma rays & UHECRs

- Explain v data by confined CRs with energies less than a few PeV
- Escaping CRs may contribute to the observed UHECR flux

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Cosmic-Ray Accelerators

CRs may or may not escape

Basics of v and y-ray Emission

HE Neutrinos from GRBs: Constraints

Standard jet models as the dominant origin: excluded by multimessenger obs.
Classical GRBs: constrained by stacking analyses <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹
※ space- and time-coincidence (duration~30 s → background free)
Low-luminosity GRBs and supernovae are allowed

Bustamante, Baerwald, KM, & Winter 15 Nature Comm.

IceCube 2017 ApJ

Photomeson Production in AGN Jets ALL REAL PROPERTY AND REAL PRO KM, Inoue & Dermer 14 dust torus 22 $\sim \sim \sim$ (IR) accretion disk (UV, X) $\sim \sim \sim$ cosmic ray blazar! broadline region blazar zone (opt, UV) (broadband) $\sim \sim \sim$ $E'^b_{\ \nu} \approx 0.05 E'^b_{\ p} \simeq 80 \text{ PeV } \Gamma^2_1 (E'_s / 10 \text{ eV})^{-1}$ inner jet photons $E'^{b}_{\nu} \approx 0.05 (0.5 m_{p} c^{2} \bar{\epsilon}_{\Delta} / E'_{\rm BL}) \simeq 0.78 \text{ PeV}$ **BLR** photons $p\gamma \rightarrow \Delta^{+} \rightarrow \pi + N$ $E'^{b}_{\nu} \simeq 0.066 \text{ EeV}(T_{\text{IR}}/500 \text{ K})^{-1}$ **IR dust photons**

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints... - Blazars: power-law CR spectra & known SEDs→ hard spectral shape

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints...

Blazars: power-law CR spectra & known SEDs→ hard spectral shape
 IceCube 9-yr EHE analyses give a limit of <10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ at 10 PeV

Neutrinos May Come from Dense Environ

If γ-ray transparent → contradiction with the gamma-ray and One of the second second

Multimessenger approach poses questions for cosmic neutrinos

HIGH ENERGY The IceCube Neutrino Observatory in Antarctica has detected high-energy cosmic neutrinos, but the corresponding high-energy gamma-rays from their source regions have not been found by the Fermi Gammaray Space Observatory.

The high-energy cosmic neutrinos are believed to originate in supermassive black holes and some gamma-ray bursts. These processes should produce gamma-rays detectable by Fermi. Looking at both detectors – a multimessenger approach – indicates that there is some unknown "hidden accelerator" process producing neutrinos without gamma radiation, or something in the source is absorbing gamma-rays. "We found that that the suppression of high-energy gamma-rays should naturally occur when neutrinos are produced via protonphoton interactions," said Kohta Murase of Penn State University, lead author of the paper in *Physical Review Letters*. http://bit.ly/1Szr2eT

KM, Guetta & Ahlers 16 PRL

High-energy neutrinos come from γ -ray dark sources?

Unexpected but in py scenarios γ rays are naturally masked by the $\gamma\gamma$ process

Transients?

Real-Time Neutrino Alerts

Neutrino Transient Sources?

Remember: UHECR accelerators may be transients

$$L_B \equiv \epsilon_B L \gtrsim 2 \times 10^{45} \frac{\Gamma^2 E_{20}^2}{Z^2 \beta} \text{ erg s}^-$$

 $\textbf{PeV-EeV} \ \nu$

 $\textbf{PeV-EeV} \ \nu$

TeV-PeV v (prompt) EeV v (afterglow) GW source

 $\begin{array}{c} \text{EeV } \nu \\ \text{GW source} \end{array}$

 $\begin{array}{c} \text{TeV-EeV } \nu \\ \text{GW source} \end{array}$

Neutrinos Coinciding w. Gravitational Waves?

GW170817: supporting the NS merger origin of short GRBs

ANTARES, IceCube, Auger, & LIGO-Virgo ApJL 17

theoretical models short GRB jets (Kimura, KM, Meszaros & Kiuchi 17) magnetar in the ejecta (Fang & Metzger 17)

(see also KM, Zhang & Meszaros 09)

- GW170817: off-axis (~30 deg): the models are still consistent
- On-axis events coinciding w. GW signals could be seen

Blazar Flares?

Flares: NOT well-constrained: good chances to see them even if subdominant

(ex. KM & Waxman 16) 50 Dermer KM Inoue 14 FSRQ, flaring Γ = 30, γ_{pk} = 10^{7.5}, t_{var} = 10⁴ s 48 $vL_{u}^{pk,syn} = 10^{47} \text{ erg s}^{-1}$ neutrino flares: even brighter \log_{10} [4 π L(ϵ , Ω) erg s⁻¹] $b = 1, v_{pk,14} = 0.1$ 46 $f_{p\gamma} \propto$ $L_{v} \propto L_{v}^{2}$ 44 $L_{cr} \propto$ BLR Internal Synchrotron 40 2013.538 2.510¹⁷ 10¹² 10¹⁵ 10¹⁴ 10^{13} 10¹⁶ 10^{18} Kadler+ 15 E_(eV) Nature Phys. $\mathbf{2}$ $F_{100-300000\,{\rm MeV}} \ [10^{-6} {\rm cm}$ big bird (2 PeV) 1.5Association between 2 PeV event and FSRQ PKS B-1424-418 (z=1.522) Low significance ($\sim 2\sigma$) 0.556400 55600 55800 5600056200 5520055400 56600

MJD

2012-09-16

2013-03-14

2011-11-13

IceCube 170922A & TXS 0506+056

TITLE:	GCN/AMON NOTICE
NOTICE_DATE:	Fri 22 Sep 17 20:55:13 UT
NOTICE TYPE:	AMON ICECUBE EHE
RUN_NUM:	130033
EVENT_NUM:	50579430
SRC_RA:	77.2853d {+05h 09m 08s} (J2000),
	77.5221d {+05h 10m 05s} (current),
	76.6176d {+05h 06m 28s} (1950)
SRC_DEC:	+5.7517d {+05d 45' 06"} (J2000),
_	+5.7732d {+05d 46' 24"} (current),
	+5.6888d {+05d 41' 20"} (1950)
SRC_ERROR:	14.99 [arcmin radius, stat+sys, 50% containment]
DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd)
DISCOVERY_TIME:	75270 SOD {20:54:30.43} UT
REVISION:	0
N_EVENTS:	1 [number of neutrinos]
STREAM:	2
DELTA_T:	0.0000 [sec]
SIGMA_T:	0.0000e+00 [dn]
ENERGY :	1.1998e+02 [TeV]
SIGNALNESS:	5.6507e-01 [dn]
CHARGE:	5784.9552 [pe]
SUN_POSTN:	180.03d {+12h 00m 08s} -0.01d {-00d 00' 53"}
SUN_DIST:	102.45 [deg] Sun_angle= 6.8 [hr] (West of Sun)
MOON_POSTN:	211.24d {+14h 04m 58s} -7.56d {-07d 33' 33"}
MOON_DIST:	134.02 [deg]
GAL_COORDS:	195.31,-19.67 [deg] galactic lon, lat of the event
ECL_COORDS:	76.75,-17.10 [deg] ecliptic lon, lat of the event
COMMENTS:	AMON_ICECUBE_EHE.

- EHE alert pipeline: from the Chiba group
- Automatic public alert: through AMON Track w. E_v ~ 300 TeV (ang. res. < 1 deg)
- Kanata -> Fermi analysis (Tanaka et al.)
 ATel #10791 (Sep/28/17)

- X-ray observations were first reported by the AMON team from Penn State
- Swift observations (Keivani et al.) GCN #21930, ATel #10942 (Sep/26/17)
- NuSTAR observations (Fox et al.) ATel #10861 (Oct/12/17)

Our Observations of TXS 0506+056

Quasi-simultaneous SED

XRT & UVOT light curves

Keivani, KM, Petropoulou, Fox et al. 2018

TXS 0506+056 SED Modeling: Hadronic

TXS 0506+056 SED Modeling: Leptonic

~< 1-3 % to see 1 event

2014-2015 Neutrino Flare

IceCube 2018 Science

Observations of TXS 0506+056

Archival SED

X-ray flux ~ 10^{-12} erg/cm²/s γ -ray flux ~ a fewx10⁻¹¹ erg/cm²/s

No indication of strong X-ray enhancement

How to Mask X rays?

- Not easy (cascade results from energy conservation)
- 1. de-beaming 2. fine tuning in the core region 3. photoelectric absorption

Implications

- Still ~3-4 σ so it could be merely a chance... But possible to detect bright transients like this blazar flare even if the sources are sub-dominant in the diffuse v flux
- If the association is physical:
 - A. If the single-zone scenario is correct, robust cascade bounds imply that: Probability to explain 1 event is <~a few % Ironically, the leptonic scenario is supported by neutrinos
 - B. Multi-zone or more complicated models may be required

Demonstration of the feasibility of v-triggered multi-messenger campaigns

Future Detectors

~10 km³ 120m→240m spacing

IceCube-Gen2

~1 km³ better angular resolution

BSM Search

Gamma-Ray Limits on Annihilating Dark Matter

Gamma-Ray Limits on Annihilating Dark Matter

CR & v Limits on Annihilating Dark Matter

IceCube Collaboration EPJ 17

Cuoco et al. PRL 17 Cui et al. PRL 17

v from Galactic halo and center complementary to γ-ray limits

anti-proton w. AMS-02 data stronger than dwarf limits for bb anomaly compatible w. GC excess

Dark Matter as an Explanation for IceCube

- Galactic: $\gamma \rightarrow \text{direct}$ (w. some attenuation), $e^{\pm} \rightarrow \text{sync.} + \text{inv.}$ Compton
- Extragalactic \rightarrow EM cascades during cosmological propagation

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Gamma-ray limits are improved independently of astrophysical modeling

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Anti-proton constraints are competing for soft channels such as DM \rightarrow bb

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

tension w. diffuse VHE γ -ray limits that are important at ultrahigh energies

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Flavor Constraints on Neutrinos

Shower-to-track ratio -> flavor information (ex. IceCube Collaboration 15 ApJ)

Neutrino Decay: Normal Hierarchy

- Neutrinos may decay via BSM processes
- HE cosmic neutrinos provide a special way to test BSM decay

$$\frac{dN_i}{dt} = -\left(\frac{m_i}{\tau_i}\frac{1}{E_\nu}\right)N_i$$

$$\kappa_i^{-1} \equiv \tau_i / m_i$$

 $L_{\rm dec} \simeq 0.01 \cdot \kappa^{-1} \left[{\rm s \ eV^{-1}} \right] E_{\nu} \left[{\rm TeV} \right] \, {\rm Mpc}$

complete decay of v_2 , v_3 disfavored only by flavors

Bustamante, Beacom & KM 17 PRD (see also Pagliaroli+ 15 PRD)

 $\tau_2/m_2, \qquad \tau_3/m_3 \gtrsim 10 \text{ seV}^{-1} (\gtrsim 2\sigma, \text{NH})$

Neutrino Decay: Inverted Hierarchy

IH is not ruled out by the flavor information

the limit by 2-3 orders of magnitudes: $\tau/m > \sim 1 \text{ s eV}^{-1}$

Neutrino-Neutrino Self-Interactions

Summary

γ -ray flux ~ ν flux ~ CR flux

multi-messenger limits are now critical for CR and DM models

Cosmic-ray sources?

pp scenarios: s<2.1-2.2 & significant contribution to Fermi γ-ray bkg. cosmic particle unification is possible with s~2 10-100 TeV data are NOT explained by CR reservoirs pγ scenarios: hidden CR accelerators?

Neutrino Transients?

TXS 0506+056 flare: the simple model does not work – need more events

BSM?

dark matter: constrained by Fermi-LAT and CR experiments 10-100 TeV data are NOT readily explained various possibilities (ex. neutrino decay, neutrino-neutrino self-interactions)

Starburst/Star-Forming Galaxies: Basics

High-surface density M82, NGC253: $\Sigma_g \sim 0.1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$ high-z MSG: $\Sigma_g \sim 0.1 \text{ g cm}^{-3} \rightarrow n \sim 10 \text{ cm}^{-3}$ submm gal. $\Sigma_q \sim 1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$

CR accelerators
 Supernovae, hypernovae, GRBs,
 Super-bubbles (multiple SNe)
 Galaxy mergers, AGN

SBG CR luminosity density $Q_{\rm cr} \sim 8.5 \times 10^{44} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} \rho_{\rm SFR,-3}$

(SFG CR energy budget ~ Milky Way CR budget is ~10 times larger)

advection time (Gal. wind) $t_{\rm esc} \approx t_{\rm adv} \approx h/V_w \simeq 3.1 \ {\rm Myr} \ (h/{\rm kpc}) V_{w,7.5}^{-1}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{esc} \simeq 1.1 \ \Sigma_{g,-1} V_{w,7.5}^{-1}(t_{esc}/t_{adv})$

 $E_{\nu}^2 \Phi_{\nu_i} \sim 10^{-9} - 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Can Blazars Explain the IceCube Data?

- Cutoff or steepening around a few PeV (ex. stochastic acceleration) But the models give up the simultaneous explanation of UHECRs
- Neutrino data at <~100 TeV are not explained by proposed models and there are constraints from stacking and clustering analyses

Galactic Neutrino Sources?

~200 TeV is coincident w. "neutrino ankle" of Galactic CRs Galactic scenarios are not ruled out but fine tuning is needed

• Why the Gal and extragalactic have the similar flux at this energy? If the same source population is responsible

$$\frac{\Delta\Omega E_{\nu}^{2}\Phi_{\nu}^{\mathrm{G}}}{4\pi E_{\nu}^{2}\Phi_{\nu}^{\mathrm{EG}}} \approx \frac{\Delta\Omega\langle r_{\mathrm{los}}\rangle}{4\pi c t_{H}\xi_{z}n_{0}^{g}\mathcal{V}} \sim 310 \left(\frac{\Delta\Omega}{4\pi}\right) \left(\frac{\langle r_{\mathrm{los}}\rangle}{3 \mathrm{ kpc}}\right)^{-2} \xi_{z}^{-1}$$

- Muon neutrino constraints (Ahlers, Bai+ 15 PRD) Galactic diffuse emission: <50% (<20% from IceCube Collab. 17) Unresolved sources in the Galactic plane: <65% Fermi bubbles, un-ID TeV sources: <25% DM decay: unconstrained
- Diffuse gamma-ray constraints (Ahlers & KM 14 PRD, KM+ 16 PRL, Kistler 16) Galactic diffuse emission: <3(ΔΩ/1 sr)% Galactic center: <40-50(ΔΩ/1 sr)% HAWC will improve the limits soon

Subdominant Sources in the Galactic Plane?

CASA-MIA limit $|b| < 5^{\circ}$ and $50^{\circ} < l < 200^{\circ}$ $E_{\nu}^{2} \Phi_{\nu} \lesssim 2 \times 10^{-9} \ (\Delta \Omega / 1 \text{ sr}) \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

CASA-MIA limit at the Galactic center

 $E_{\nu}^{2} \Phi_{\nu} \lesssim 3 \times 10^{-8} \ (\Delta \Omega / 1 \text{ sr}) \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

constraints on proposed models

- diffuse Galactic emission (Anchordoqui+ 14, Neronov+ 14, Joshi+14) too steep spectra
- supernova/hypernova remnants (Fox+ 13)
 gamma limits look violated

Association of many events w. the Galactic plane is unlikely

Example: Fermi Bubbles?

Fang, Su, Linden & KM 17 PRD updated from Ahlers & KM 14 PRD

- consistent w. Γ >2.2 (although the cutoff is indicated by Fermi)
- Contribution to diffuse neutrino flux is subdominant

Example: Galactic Halo?

Airshower arrays have placed diffuse γ -ray limits at TeV-PeV

Isotropic limits (Galactic halo CR model)

$$n_{\rm H} = (10^{-4.2 \pm 0.25}) ({\rm R}/{\rm R_{vir}})^{-0.8 \pm 0.25}$$

B

Existing old TeV-PeV γ-ray limits are close to predicted fluxes
 → Need deeper TeV-PeV γ-ray observations (relatively not expensive)

ℜ Fermi γ-ray data imply s_v < 2.0 → support extragalactic scenarios