Perturbations of Hairy Black Holes in Shift-symmetric Scalar-Tensor theories

RESCEU summer school, Aug.1st-Aug.4th,2015@ Kinugawa

Hiromu Ogawa

Tsutomu Kobayashi

Rikkyo Univ.

Teruaki Suyama

RESCEU the Univ of Tokyo

Table of Contents

1.Introduction and Motivation

2.Brief review

Dressing BH in Shift-symmetric Scalar-Tensor(ST) theory

3.BH perturbations in Shift-symmetric ST theories

4.Summary and Outlook

General Relativity (GR) 100th anniversary

most successful gravitational theory "now"

Modified Gravity (MG) explains accelerating Universe

additional field, higher dimension, Lorentz violation, etc...

How to compare MG with GR? Astrophysical tests "gravitational waves "not studied in MG using Black Holes

Motivation

BH Hair

Many ST theory: No-hair theorem mass

(Brans Dicke,K-essence,Galileon, etc...)

mass, charge, angular momentum

Bekenstein (1995); Hui, Nicolis(2014)...

Shift-symmetric ST theory with time-dependent scalar field

BH solution found with non-trivial scalar hair

(this scalar is regular at the horizon)

Bavichev, Charmousis(2014)

Stealth Schwarzschild

Schwarzschild metric with nontrivial configuration of the scalar field

Self-tuned Schwarzschild-de-sitter

screening of the bare huge cosmological constant

Motivation

However...

GR Schwarzschild Stealth Schwarzschild Distinguishable? Perturbation **Stability? Can exist? Gravitational waves?**

Dressing BH in Shift-symmetric Scalar-Tensor Theory

Dressing BH in Shift-symmetric ST theory

Shift & reflection symmetry: $\phi \rightarrow \phi + \text{const.}, \quad \phi \rightarrow -\phi$

Assumptions

 $ds^{2} = -h(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega^{2}$ $J^{r} = 0 \longrightarrow \text{Current} J^{2} = J_{\mu}J^{\mu} \text{ regular at the horizon}$ $\phi(t, r) = qt + \psi(r) \longrightarrow \text{Space-time is static in}$ Shift-symmetric theory

Dressing BH in Shift-symmetric ST theory

 $\mathcal{L} = [\zeta R - \eta (\partial \phi)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2\Lambda] \qquad \phi(t, r) = qt + \psi(r)$

Stealth Schwarzschild $f(r) = h(r) = 1 - \frac{\mu}{r} \qquad \mu : \text{const.}$ $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$

Self-tuned Schwarzschild-de-sitter

$$f(r) = h(r) = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^2 \longrightarrow \Lambda_{\text{eff}} = -\frac{\zeta\eta}{\beta}$$

this metric represent Schwarzschild BH in the presence of cosmological constant **present model** Λ **does not appear!** we do not conceive huge bare Λ through the metric

Dressing BH in Shift-symmetric ST theory

 $\mathcal{L} = [\zeta R - \eta (\partial \phi)^2 + \beta G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2\Lambda]$

Stealth Schwarzschild $f(r) = h(r) = 1 - \frac{\mu}{r} \qquad \mu : \text{const.}$ $\phi_{\pm} = qt \pm q\mu \left[2\sqrt{\frac{r}{\mu}} + \log \frac{\sqrt{r} - \sqrt{\mu}}{\sqrt{r} + \sqrt{\mu}} \right] + \phi_0$

Self-tuned Schwarzschild-de-sitter

$$f(r) = h(r) = 1 - \frac{\mu}{r} + \frac{\eta}{3\beta}r^{2} \longrightarrow \Lambda_{\text{eff}} = -\frac{\zeta\eta}{\beta}$$
$$\psi(r)' = \pm \frac{q}{h(r)}\sqrt{1 - h(r)} \qquad \Lambda > \Lambda_{\text{eff}}$$

Babichev, Charmousis(2014) can be generalized $\mathcal{L} = G_2(X) + G_4(X)R + G_{4X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$

Kobayashi, Tanahashi(2014)

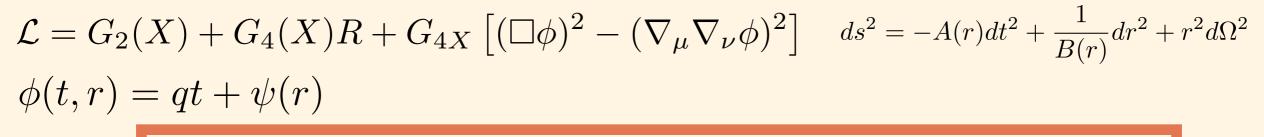
HO, Kobayashi, Suyama in preparation

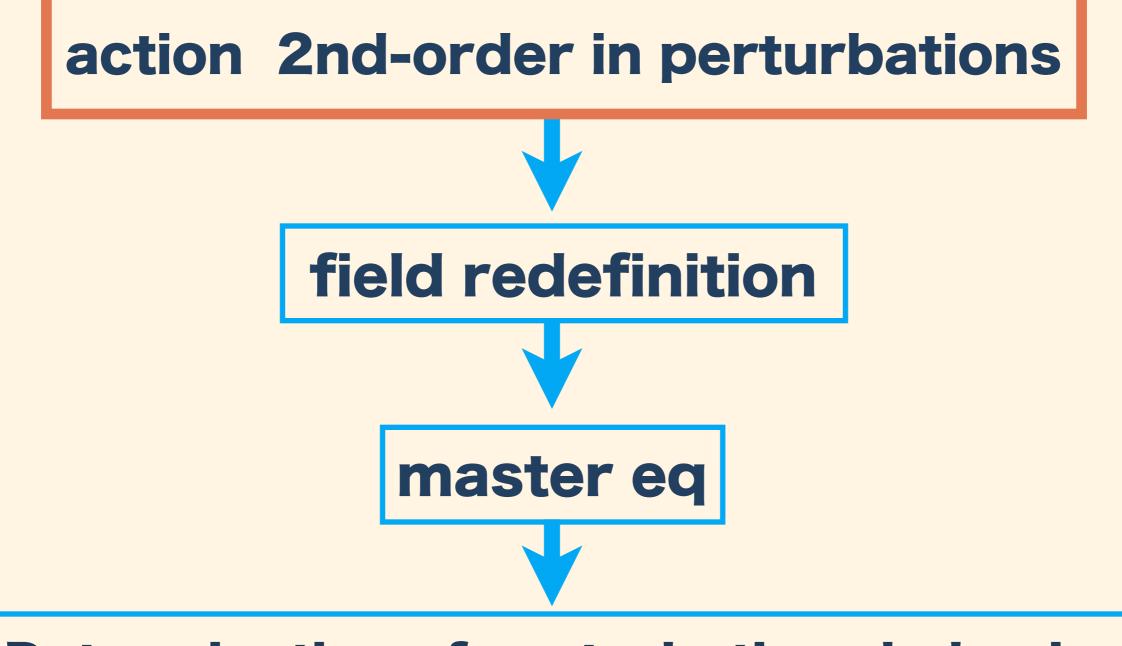
The most general 2nd-order theory with shift & reflection symmetries

$$\mathcal{L} = G_2(X) + G_4(X)R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right]$$
$$\phi(t, r) = qt + \psi(r)$$

Perturbations can be written as following eq (odd-parity)

Detail:Suyama san's poster"BH perturbations in Horndeski theory"





Determination of perturbations behavior

$$\mathcal{L} = G_2(X) + G_4(X)R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] \quad ds^2 = -A(r)dt^2 + \frac{1}{B(r)}dr^2 + r^2 d\Omega^2$$

$$\phi(t, r) = qt + \psi(r)$$

action 2nd-order in perturbations

time-dependent scalar(my result) mixing term! $\dot{h}_i := \frac{\partial h_i}{\partial t}, \quad h'_i := \frac{\partial h_i}{\partial r}$ $\frac{2l+1}{2\pi}\mathcal{L}^{(2)} = A_1h_0^2 + A_2h_1^2 + A_4h_0h_1$ $+A_3\left(\dot{h}_1^2 - 2h_0'\dot{h}_1 + h_0'^2 + \frac{4}{r}h_0\dot{h}_1\right)$ static scalar(Kobayashi, Motohashi, Suyama(2012)) $\frac{2l+1}{2\pi}\mathcal{L}^{(2)} = a_1h_0^2 + a_2h_1^2$ $+a_3\left(\dot{h}_1^2-2\dot{h}_1h_0'+h_0'^2+\frac{4}{r}\dot{h}_1h_0\right)$

$$\mathcal{L} = G_2(X) + G_4(X)R + G_{4X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] \quad ds^2 = -A(r)dt^2 + \frac{1}{B(r)}dr^2 + r^2 d\Omega^2$$

$$\phi(t,r) = qt + \psi(r) \qquad \qquad \frac{2l+1}{2\pi}\mathcal{L}^{(2)} = A_1h_0^2 + A_2h_1^2 + A_4h_0h_1$$

time-dependent

$$A_3 = G_4 - \left(\frac{q^2}{A} - B\Psi'^2\right)G_{4X}$$

$$\begin{aligned} \frac{2l+1}{2\pi} \mathcal{L}^{(2)} = &A_1 h_0^2 + A_2 h_1^2 + A_4 h_0 h_1 \\ &+ A_3 \left(\dot{h}_1^2 - 2h'_0 \dot{h}_1 + h'_0^2 + \frac{4}{r} h_0 \dot{h}_1 \right) \\ \frac{2l+1}{2\pi} \mathcal{L}^{(2)} = &a_1 h_0^2 + a_2 h_1^2 \\ &+ a_3 \left(\dot{h}_1^2 - 2\dot{h}_1 h'_0 + {h'_0}^2 + \frac{4}{r} \dot{h}_1 h_0 \right) \end{aligned}$$

static

$$a_3 = G_4 - \frac{B\Psi'^2}{G_{4X}}$$

other coefficients are modified similarly but not in exactly the same way

Implications (difference time-dependent between static) propagation of speed changes? stability conditions changes?

Summary and Outlook

BH with time-dependent scalar found some interesting Black Hole solutions
BH stability in Shift-symmetric ST theory obtained action up to 2nd-order in perturbations

BH stability conditions may change

Outlook

derive master equation

obtain BH stability conditions