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M Many modified theories of gravity have been considered

M f(R) gravity --- one of the simplest generalizations of GR

® There are some f(R) models which are viable on both cosmological and local scales

M EoS of dark energy: Ppg = WpPpEg
® w =—1in ACDM model
® w + —1in f(R) theories

— Important for distinguishing models.

M Observational constraint (Kowalski et al. (2008)) SN+BAO+CMB
11+ w,.05] <0.1

M “Fifth force” must be small (Brax et al. (2008)) --- local constraint
(1 4+ w)Qpg| < 10™* <mmm Extremely small!
— We argue that this is incorrect
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B Action
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M Einstein field equation

_ 1 _ _
G,uv = 8nG <V,u¢|7v¢ - g_uv [E (V¢)2 + V((.b)] + Tumv)

M Klein-Gordon equation

O¢ = V'($) + Mi Ormel ®/Me
Pl

B The dynamics of ¢ are governed by an effective potential

[ Veee() = V(@) + pryePP/Mei ]

— Depends on local matter densities

2015/8/3 RESCEU APCOSPA SUMMER SCHOOL



small p large p

2015/8/3 RESCEU APCOSPA SUMMER SCHOOL



M Thin-shell solution --- scalar field configuration around a uniform spherical object

M|t played a crucial role in the previous work
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B General form of the thin-shell solution

> T

surface
6 = ¢ — by |
A
O RS RC
thin-shell
¢c - ¢b < i S
Pc Pp
M Thin-shell parameter

R.—R fifth force
1 > Eth — (o S ( )

R.  (Newtonian force)

Mt is a solution of the Poisson equation (static assumption):

V2 = Vegr(h)
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M Functional form

6 = | 3Mp,
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M Einstein egs. (background) o = G
8mG /p 26 . 8mGegy 0 = F
2 7 _m i — ell, 0
H®=— (F +FV(¢b))+MP1H¢b— 3 (Pm + PpE)
24 e = —8nGV(¢)+Lq52—£(<}5+2Hq§ ) = —8nGegroP
7 3 M1§1 b My, b) = eff,0L DE
M (Effective) EoS of Dark Energy
Foe _
PDE
poe+Por 2B (dp 2 ¢p (Fo )
14+ w)Qpg = = — + —+|—=-1)Q
( W) bE Pcr 3IVIPI H H? 9M1§1 H? F "
M Since qu ~ HA¢p, we get A¢: variation of ¢, in the last Hubble time

(1 +w)Qpg| ~ 0 (ﬂAfp)
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B

|(1 + wpg)Qpgl ~ 0 (M_Pl A¢>

M Ag: variation of ¢, f@lm time t to ¢,

t: pasttime atwhichz = 1

M Relation between th

Pc

some celestial oﬁ'e
e.g. galaxy cluster

ensity and the minimum of the effective potential
pp(t) > pp(te) = ¢ < Pp(t) < dp(to)

p p

M_PIA¢ < M_p] |5¢C(t0)| 5¢c(t0) = ¢c — ¢b(t0)

M Consider an object wih thin shell

B
M—|5¢c(to)| <ODy|=ep<1
Pl

Models with large |1 + w|

(1 + wpe)Qpe| < Py ] - cannot have a thin shell??

2015/8/3 RESCEU APCOSPA SUMMER SCHOOL



M |n a cosmological situation, the exterior solution of the Poisson equation does not satisfy the
original Klein-Gordon equation

2
—8¢p —3HS¢p + —0¢ - m2s¢p =0

since
VZ
= 5¢p ~ 0(mpé¢)

) . > same order for models with m;, ~ O(H)
8¢, HS¢p ~ O(H?*5¢)

B Note that the interior solution need not be changed since m, > H.

M For example, Starobinsky’s model

R\?\
F(R) = R + AR, (1+(R—>> —1

has m; = H for smalln, A.

® Actually, it is in such models that w deviates appreciably from —1.
® Forn=2andA=1,m,/H = 3.1and wy = —0.94
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M Give a counterexample for the previous work

B Assume the background spacetime evolves as in wCDM model with w # —1, and solve the
scalar field equation around a spherical object.

M2 steps:
® Construct the solution in w = —1 (de Sitter) case.

® Construct the solution in w # —1 case perturbatively, up to firstorderine =1 + w.

B Conformal time 7 is used as time variable in order that € — 0 limit is well-defined.

2 ‘dt’
t3e ,E>0 t—->n 3 = f t
a(t) « 2 ) (1) X (—n)_l_fe a(t’)

(trip —t)3¢ ,e<0
l e—0
t—>n

ags(t) oc Mt wmm—) q,5(n) o< (=n)7"
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M Klein-Gordon equation outside the object ,_ 0
—8¢out — 2HEPoue + (V2 —mpa®)Sdoue = 0 o

al
H=—=aH

B Find a solution which is smoothly connected to the interior solution a

0P, ,ar < Rg

S =1 Boc (@r)* RE 3 "]
—ZR R R
Mo\ 2 +ar 5 Rs +6¢, ,R; <ar <R,

r = ar in the original
Thin-shell solution

M |f we make an ansatz
Sp(n,r) = p(Har),
using some one variable function ¢@(u), the KG equation becomes an ODE:
2 2 _ 2
d*Pout(u) + 4u 2 doout(u) N (mb) Pout(u) — 0 u= Har
du? u(u?—-1) du H/ u?2-1
with the following boundary conditions:

® Yoyt = Pin and 0y Poyur = 0y Pin atu = HR,

® o, 2> 0asu—» o
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B The exterior solution is obtained as

_ MP]|6¢C|

Rc_Rs

€Eth = =
"7 B RZp,

[6¢out - =

€EtnHR:Gq (HGT)J

Rc

3+ 2ia 3 —2ix

gaw) = 9P W) -2

(1)
1T Zion /1 = Ziay P W

1
a2
2’”)

34+ 2ia 3 —2ia

1+ 2ia 1—2ia_

,F;: hypergeometric function

The constant before <pc(rl)(u) is chosen so that g, (u) does not diverge at u = 1.
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B General form of the solution

R
Sp = ¢ — S ,
b= A surface horizon
R, H1 ar
0 v _
0Pc

B The ratio between the fifth force and the Newtonian force is of order €, as in an ordinary
thin-shell solution.

— Small fifth force!
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B \We choose the solution in w = —1 case

BpcRE
Spour = — -

Mp,
as a zeroth-order solution.

€thHR go(HT)

M Perturbative expansion with respecttoe =14+ w

BpcRE
SPout = — ]VICPIC

ecnHR 9o (HT) + €A(n,1)]

= 0(1) should be < 0(1)
.-+ checked later

B KG equation for the perturbative part
elA” + 21 A — (V2 — mia?)A]

= niz |—(2Cy — 3)Hrgy(Hr) — 2Cpga(HT)] 2=

where C¢ is determined once a model is fixed.
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M Again, assume a solution in the form of
A(n,r) = B(u)
where
u =Hr = Har
The perturbed KG equation is rewritten as an ODE
d’B(u) 4u?-2 dB(uw) my\2 B(w)
du? +u(u2—1) du (H) u2—1=](u)
(2Cp — 3)ugs(w) + 2Cpg, (W)
a us—1

jw) =

M The homogeneous solutions are already known --- the solutions in w = —1 case
— The inhomogeneous solutions can be obtained by the method of variation of parameters!
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M Basis of the homogeneous solutions

{Bl W) = o’ (W)

B,(u) = go(w) dB, dB;
W=B———B,—
du du

M Inhomogeneous solution

B(u) = C;B;(u) + C,B,(u) — Bl(u)f du’ —] + Bz(u)f du ]

B \We require that
® B does not diverge atu = 1 (ar = H™ 1)
®B =0atu = HR, (ar = R,)

Bl(HRc) BZ

B() B()fud IBZ._I_B()[jud/Bl. ! d/ ]
— = —B;(u u' — u u — u' —
p I N R . w! " B,(HR.) . w’
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B The form of the solution (written again)

BpcR? e=l+w
SPout = —M—PlfthHRc[ga(?[T) + eA(n,7)]
A(n,r) =B(u), u=Hr=Har

M Plots of B(p) for various parameters of Starobinsky’s model

—n=2,1=1 —n=2,2=1
n=3, A=1 n=2,A=1.5
~n=4, A=1 —n=2,2=2
\‘_'_‘_'_'__—_'———_——_ \1‘___:‘—_'—_,—;,'_—_—'_.—_—-:'—'_*'__
0 2 4 6 8 10 0 2 4 6 8 10
p p

< 0(1) for all parameters

M Here again the fifth force is small.
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M The effective EoS parameter w deviates from —1 in f(R) gravity.

MIn the previous work, the thin-shell solution was naively used to a cosmological
situation and it was concluded that w must be extremely close to —1. This is
incorrect because the time derivative becomes important in a cosmological scale.

MWe took time derivative into consideration and constructed a scalar configuration
with small fifth force in the case where w deviates appreciably from —1.

— Models with |1 + w| ~ 0(0.1) can not be excluded by the fifth-force constraint.
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