Equation of state of dark energy in $f(R)$ gravity

The University of Tokyo, RESCEU
K. Takahashi, J. Yokoyama

Phys. Rev. D 91, 084060 (2015)

> Motivation

\square Many modified theories of gravity have been considered
$\square f(R)$ gravity \cdots one of the simplest generalizations of GR

- There are some $f(R)$ models which are viable on both cosmological and local scales
\square EoS of dark energy: $P_{\mathrm{DE}}=w \rho_{\mathrm{DE}}$
- $w=-1$ in Λ CDM model
- $w \neq-1$ in $f(R)$ theories
\rightarrow Important for distinguishing models.

■ Observational constraint (Kowalski et al. (2008)) SN+BAO+CMB

$$
\left|1+w_{z<0.5}\right|<0.1
$$

■"Fifth force" must be small (Brax et al. (2008)) ... local constraint

$$
\left|(1+w) \Omega_{\mathrm{DE}}\right|<10^{-4} \longleftarrow \text { Extremely small! }
$$

\rightarrow We argue that this is incorrect

$f(R)$ gravity

■Action

■ Einstein frame

$$
S=\frac{M_{\mathrm{Pl}}^{2}}{2} \int d^{4} x \sqrt{-g} f(R)+{\underline{S_{\mathrm{m}}}\left(g_{\mu v}, \Psi\right)}^{x}
$$

$$
\begin{gathered}
g_{\mu \nu} \rightarrow \bar{g}_{\mu \nu}=f^{\prime}(R) g_{\mu \nu} \\
f^{\prime}(R) \equiv F(R) \equiv e^{-2 \beta \phi / M_{\mathrm{Pl}}}, \quad \beta \equiv \frac{1}{\sqrt{6}} \\
S=\int d^{4} x \sqrt{-\bar{g}}\left(\frac{M_{\mathrm{Pl}}^{2}}{2} \bar{R}-\frac{1}{2}(\bar{\nabla} \phi)^{2}-V(\phi)\right)+S_{\mathrm{m}}\left(e^{2 \beta \phi / M_{\mathrm{Pl}}} \bar{g}_{\mu \nu}, \Psi\right) \\
V(\phi)=\frac{1}{16 \pi G} \frac{R F-f}{F^{2}}
\end{gathered} \begin{array}{|c}
\text { scalar field } \\
\left(=\frac{\beta}{M_{\mathrm{Pl}}} \vec{\nabla} \phi\right)
\end{array}
$$

EoM in the Einstein frame

$■$ Einstein field equation

$$
\bar{G}_{\mu \nu}=8 \pi G\left(\bar{\nabla}_{\mu} \phi \bar{\nabla}_{\nu} \phi-\bar{g}_{\mu \nu}\left[\frac{1}{2}(\bar{\nabla} \phi)^{2}+V(\phi)\right]+\bar{T}_{\mu \nu}^{\mathrm{m}}\right)
$$

■ Klein-Gordon equation

$$
\bar{\square} \phi=V^{\prime}(\phi)+\frac{\beta}{M_{\mathrm{Pl}}} \tilde{\rho}_{\mathrm{m}} e^{\beta \phi / M_{\mathrm{Pl}}}
$$

■The dynamics of ϕ are governed by an effective potential

$$
V_{\mathrm{eff}}(\phi) \equiv V(\phi)+\tilde{\rho}_{\mathrm{m}} e^{\beta \phi / M_{\mathrm{Pl}}}
$$

\rightarrow Depends on local matter densities

$>$ Chameleon mechanism

small ρ
large ρ

large $\phi_{\text {min }}$

$$
\begin{aligned}
\rho_{1} & <\rho_{2} \\
\phi_{1}^{\min } & >\phi_{2}^{\min } \\
m_{1} & <m_{2}
\end{aligned}
$$

$>$ Thin-shell solution

-Thin-shell solution \cdots scalar field configuration around a uniform spherical object - It played a crucial role in the previous work

$$
\begin{aligned}
& \text { outside } \\
& \rho=\rho_{b} \\
& \phi=\phi_{b}
\end{aligned}
$$

Thin-shell solution

■ General form of the thin-shell solution

■Thin-shell parameter

$$
1>\epsilon_{\mathrm{th}}=\frac{R_{c}-R_{S}}{R_{c}} \approx \frac{(\text { fifth force })}{(\text { Newtonian force })}
$$

It is a solution of the Poisson equation (static assumption):

$$
\nabla^{2} \phi=V_{\mathrm{eff}}^{\prime}(\phi)
$$

Thin-shell solution

- Functional form

$$
\delta \phi=\left\{\begin{array}{ccc}
\delta \phi_{c} & , r<R_{s} & \delta \phi \equiv \phi-\phi_{b} \\
\frac{\beta \rho_{c}}{3 M_{\mathrm{Pl}}}\left(\frac{r^{2}}{2}+\frac{R_{s}^{3}}{r}-\frac{3}{2} R_{s}^{2}\right)+\delta \phi_{c} & , R_{s}<r<R_{c} & \\
-\frac{\beta \rho_{c}}{3 M_{\mathrm{Pl}}} \epsilon_{\mathrm{th}} \frac{R_{c}^{3}}{r} e^{-m_{b}\left(r-R_{c}\right)} & , r>R_{c} &
\end{array}\right.
$$

$$
\epsilon_{\mathrm{th}} \equiv \frac{M_{\mathrm{Pl}}}{\beta} \frac{\left|\delta \phi_{c}\right|}{R_{c}^{2} \rho_{c}} \approx \frac{R_{c}-R_{S}}{R_{c}}
$$

EoS of dark energy

■ Einstein eqs. (background)

$$
\begin{gathered}
H^{2}=\frac{8 \pi G}{3}\left(\frac{\rho_{\mathrm{m}}}{F}+F V\left(\phi_{b}\right)\right)+\frac{2 \beta}{M_{\mathrm{Pl}}} H \dot{\phi}_{b} \equiv \frac{8 \pi G_{\mathrm{eff}, 0}}{3}\left(\rho_{\mathrm{m}}+\rho_{\mathrm{DE}}\right) \\
\frac{2 \ddot{a}}{a}+H^{2}=-8 \pi G V(\phi)+\frac{2}{3 M_{\mathrm{Pl}}^{2}} \dot{\phi}_{b}^{2}-\frac{2 \beta}{M_{\mathrm{Pl}}}\left(\ddot{\phi}+2 H \dot{\phi}_{b}\right) \equiv-8 \pi G_{\mathrm{eff}, 0} P_{\mathrm{DE}}
\end{gathered}
$$

$$
G_{\mathrm{eff}, 0} \equiv \frac{G}{F_{0}}
$$

■(Effective) EoS of Dark Energy

$$
\frac{P_{\mathrm{DE}}}{\rho_{\mathrm{DE}}}=w
$$

$$
(1+w) \Omega_{\mathrm{DE}}=\frac{\rho_{\mathrm{DE}}+P_{\mathrm{DE}}}{\rho_{\mathrm{cr}}}=\frac{2 \beta}{3 M_{\mathrm{Pl}}}\left(\frac{\dot{\phi}_{b}}{H}-\frac{\ddot{\phi}_{b}}{H^{2}}\right)+\frac{2}{9 M_{\mathrm{Pl}}^{2}} \frac{\dot{\phi}_{b}^{2}}{H^{2}}+\left(\frac{F_{0}}{F}-1\right) \Omega_{\mathrm{m}}
$$

\square Since $\dot{\phi}_{b} \sim H \Delta \phi$, we get
$\Delta \phi$: variation of ϕ_{b} in the last Hubble time

$$
\left|(1+w) \Omega_{\mathrm{DE}}\right| \sim O\left(\frac{\beta}{M_{\mathrm{Pl}}} \Delta \phi\right)
$$

EoS of dark energy

$$
\left|\left(1+w_{\mathrm{DE}}\right) \Omega_{\mathrm{DE}}\right| \sim O\left(\frac{\beta}{M_{\mathrm{Pl}}} \Delta \phi\right)
$$

$\square \Delta \phi$: variation of ϕ_{b} fi m time t to t_{0}

t : past time at which $z \gtrsim 1$

Relation between the density and the minimum of the effective potential
some celestial obje
e.g. galaxy cluster

$$
\rho_{b}(t)>\rho_{b}\left(t_{0}\right) \quad \Rightarrow \quad \phi_{c}<\phi_{b}(t)<\phi_{b}\left(t_{0}\right)
$$

■ Consider an object w
h thin shell

$$
\frac{\beta}{M_{\mathrm{Pl}}}\left|\delta \phi_{c}\left(t_{0}\right)\right|<\Phi_{N} \Leftrightarrow \epsilon_{\mathrm{th}}<1
$$

$$
\left|\left(1+w_{\mathrm{DE}}\right) \Omega_{\mathrm{DE}}\right|<\Phi_{N}
$$

Models with large $|1+w|$ cannot have a thin shell??

What is wrong?

■ In a cosmological situation, the exterior solution of the Poisson equation does not satisfy the original Klein-Gordon equation

$$
-\ddot{\delta \phi}-3 H \dot{\delta \phi}+\frac{\nabla^{2}}{a^{2}} \delta \phi-m_{b}^{2} \delta \phi=0
$$

since

$$
\begin{aligned}
\frac{\nabla^{2}}{a^{2}} \delta \phi & \sim O\left(m_{b}^{2} \delta \phi\right) \\
\ddot{\delta \phi}, H \dot{\delta \phi} \phi & \sim O\left(H^{2} \delta \phi\right)
\end{aligned}, \text { same order for models with } m_{b} \sim O(H)
$$

\square Note that the interior solution need not be changed since $m_{c} \gg H$.

■ For example, Starobinsky's model

$$
f(R)=R+\lambda R_{S}\left[\left(1+\left(\frac{R}{R_{S}}\right)^{2}\right)^{-n}-1\right]
$$

has $m_{b} \gtrsim H$ for small n, λ.

- Actually, it is in such models that w deviates appreciably from -1 .
- For $n=2$ and $\lambda=1, m_{b} / H \approx 3.1$ and $w_{0} \approx-0.94$

Our work

Give a counterexample for the previous work
\square Assume the background spacetime evolves as in $w C D M$ model with $w \neq-1$, and solve the scalar field equation around a spherical object.
$\square 2$ steps:

- Construct the solution in $w=-1$ (de Sitter) case.
- Construct the solution in $w \neq-1$ case perturbatively, up to first order in $\epsilon \equiv 1+w$.

■ Conformal time η is used as time variable in order that $\epsilon \rightarrow 0$ limit is well-defined.

$$
\begin{gathered}
a(t) \propto\left\{\begin{array}{ccc}
t^{\frac{2}{3 \epsilon}} & , \epsilon>0 & t \rightarrow \eta \\
\left(t_{\text {rip }}-t\right)^{\frac{2}{3 \epsilon}} & , \epsilon<0
\end{array}\right. \\
\\
a_{\mathrm{dS}}(t) \propto e^{H t} \stackrel{t \rightarrow \eta(\eta) \propto(-\eta)^{-1-\frac{3}{2}} \epsilon}{ } \quad \begin{array}{ll}
& \\
& \\
& \\
& \\
& a_{\mathrm{dS}}(\eta) \propto \int^{t} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
\end{array} \\
\end{gathered}
$$

$w=-1$ case

\square Klein-Gordon equation outside the object

$$
-\delta \phi_{\text {out }}^{\prime \prime}-2 \mathcal{H} \delta \phi_{\text {out }}^{\prime}+\left(\nabla^{2}-m_{b}^{2} a^{2}\right) \delta \phi_{\text {out }}=0
$$

$$
{ }^{\prime} \equiv \frac{\partial}{\partial \eta}
$$

\square Find a solution which is smoothly connected to the interior solution

$$
\mathcal{H} \equiv \frac{a^{\prime}}{a}=a H
$$

$$
\delta \phi_{\mathrm{in}}=\left\{\begin{array}{cc}
\delta \phi_{c} & , \operatorname{ar}<R_{S} \\
\frac{\beta \rho_{c}}{3 M_{\mathrm{Pl}}}\left(\frac{(a r)^{2}}{2}+\frac{R_{s}^{3}}{a r}-\frac{3}{2} R_{s}^{2}\right)+\delta \phi_{c} & , R_{S}<a r<R_{C}
\end{array}\right.
$$

■ If we make an ansatz

$$
\delta \phi(\eta, r)=\varphi(\text { Har })
$$

using some one variable function $\varphi(u)$, the KG equation becomes an ODE:

$$
\frac{d^{2} \varphi_{\mathrm{out}}(u)}{d u^{2}}+\frac{4 u^{2}-2}{u\left(u^{2}-1\right)} \frac{d \varphi_{\mathrm{out}}(u)}{d u}+\left(\frac{m_{b}}{H}\right)^{2} \frac{\varphi_{\mathrm{out}}(u)}{u^{2}-1}=0
$$

$$
u \equiv H a r
$$

with the following boundary conditions:

- $\varphi_{\text {out }}=\varphi_{\text {in }}$ and $\partial_{u} \varphi_{\text {out }}=\partial_{u} \varphi_{\text {in }}$ at $u=H R_{c}$
- $\varphi_{\text {out }} \rightarrow 0$ as $u \rightarrow \infty$

$w=-1$ case

■The exterior solution is obtained as

$$
\delta \phi_{\text {out }}=-\frac{\beta \rho_{c} R_{c}^{2}}{M_{\mathrm{Pl}}} \epsilon_{\mathrm{th}} H R_{c} g_{\alpha}(\text { Har })
$$

$$
\epsilon_{\mathrm{th}} \equiv \frac{M_{\mathrm{Pl}}}{\beta} \frac{\left|\delta \phi_{c}\right|}{R_{c}^{2} \rho_{c}} \approx \frac{R_{c}-R_{s}}{R_{c}}
$$

where

$$
\begin{aligned}
& g_{\alpha}(u) \equiv \varphi_{\alpha}^{(2)}(u)-2 \frac{\Gamma\left(\frac{3+2 i \alpha}{4}\right) \Gamma\left(\frac{3-2 i \alpha}{4}\right)}{\Gamma\left(\frac{1+2 i \alpha}{4}\right) \Gamma\left(\frac{1-2 i \alpha}{4}\right)} \varphi_{\alpha}^{(1)}(u) \quad \alpha \equiv \sqrt{\left(\frac{m_{b}}{H}\right)^{2}-\frac{9}{4}} \\
& \left\{\begin{array}{l}
\varphi_{\alpha}^{(1)}(u)={ }_{2} F_{1}\left(\frac{3+2 i \alpha}{4}, \frac{3-2 i \alpha}{4} ; \frac{3}{2} ; u^{2}\right), \\
\varphi_{\alpha}^{(2)}(u)=\frac{1}{u}{ }_{2} F_{1}\left(\frac{1+2 i \alpha}{4}, \frac{1-2 i \alpha}{4} ; \frac{1}{2} ; u^{2}\right) \\
{ }_{2} F_{1}: \text { hypergeometric function }
\end{array}\right.
\end{aligned}
$$

The constant before $\varphi_{\alpha}^{(1)}(u)$ is chosen so that $g_{\alpha}(u)$ does not diverge at $u=1$.

$>w=-1$ case

■ General form of the solution

■The ratio between the fifth force and the Newtonian force is of order ϵ_{th} as in an ordinary thin-shell solution.
\rightarrow Small fifth force!

$\Delta w \neq-1$ case

- We choose the solution in $w=-1$ case

$$
\delta \phi_{\mathrm{out}}=-\frac{\beta \rho_{c} R_{c}^{2}}{M_{\mathrm{Pl}}} \epsilon_{\mathrm{th}} H R_{c} g_{\alpha}(\mathcal{H} r)
$$

as a zeroth-order solution.
\square Perturbative expansion with respect to $\epsilon=1+w$

$$
\delta \phi_{\text {out }}=-\frac{\beta \rho_{c} R_{c}^{2}}{M_{\mathrm{Pl}}} \epsilon_{\mathrm{th}} H R_{c} \frac{\left[g_{\alpha}(\mathcal{H} r)\right.}{\gtrsim O(1)}+\frac{\epsilon A(\eta, r)]}{\text { should be } \lesssim O(1)}
$$

$$
\cdots \text { checked later }
$$

■KG equation for the perturbative part

$$
\begin{aligned}
\epsilon\left[A^{\prime \prime}\right. & \left.+2 \mathcal{H} A^{\prime}-\left(\nabla^{2}-m_{b}^{2} a^{2}\right) A\right] \\
& =\frac{\epsilon}{\eta^{2}}\left[-\left(2 C_{\phi}-3\right) \mathcal{H} r g_{\alpha}^{\prime}(\mathcal{H} r)-2 C_{\phi} g_{\alpha}(\mathcal{H} r)\right] \frac{\phi_{b}^{\prime}}{\phi_{b}} \equiv \frac{C_{\phi}}{-\eta} \epsilon
\end{aligned}
$$

where C_{ϕ} is determined once a model is fixed.

$w \neq-1$ case

\square Again, assume a solution in the form of

$$
A(\eta, r) \equiv B(u)
$$

where

$$
u \equiv \mathcal{H r}=\operatorname{Har}
$$

The perturbed KG equation is rewritten as an ODE

$$
\begin{gathered}
\frac{d^{2} B(u)}{d u^{2}}+\frac{4 u^{2}-2}{u\left(u^{2}-1\right)} \frac{d B(u)}{d u}+\left(\frac{m_{b}}{H}\right)^{2} \frac{B(u)}{u^{2}-1}=j(u) \\
j(u) \equiv-\frac{\left(2 C_{\phi}-3\right) u g_{\alpha}^{\prime}(u)+2 C_{\phi} g_{\alpha}(u)}{u^{2}-1}
\end{gathered}
$$

■The homogeneous solutions are already known \cdots the solutions in $w=-1$ case
\rightarrow The inhomogeneous solutions can be obtained by the method of variation of parameters!

$w \neq-1$ case

■ Basis of the homogeneous solutions

$$
\left\{\begin{array}{l}
B_{1}(u) \equiv \varphi_{\alpha}^{(1)}(u) \\
B_{2}(u) \equiv g_{\alpha}(u)
\end{array}\right.
$$

■Inhomogeneous solution

$$
W \equiv B_{1} \frac{d B_{2}}{d u}-B_{2} \frac{d B_{1}}{d u}
$$

$$
B(u)=C_{1} B_{1}(u)+C_{2} B_{2}(u)-B_{1}(u) \int_{0}^{u} d u^{\prime} \frac{B_{2}}{W} j+B_{2}(u) \int_{0}^{u} d u^{\prime} \frac{B_{1}}{W} j
$$

We require that

- B does not diverge at $u=1\left(a r=H^{-1}\right)$
- $B=0$ at $u=H R_{c}\left(a r=R_{c}\right)$
$\longrightarrow B(p)=-B_{1}(u) \int_{1}^{u} d u^{\prime} \frac{B_{2}}{W} j+B_{2}(u)\left[\int_{H R_{c}}^{u} d u^{\prime} \frac{B_{1}}{W} j-\frac{B_{1}\left(H R_{c}\right)}{B_{2}\left(H R_{c}\right)} \int_{H R_{c}}^{1} d u^{\prime} \frac{B_{2}}{W} j\right]$

$>w \neq-1$ case

■The form of the solution (written again)

$$
\begin{gathered}
\delta \phi_{\mathrm{out}}=-\frac{\beta \rho_{c} R_{c}^{2}}{M_{\mathrm{Pl}}} \epsilon_{\mathrm{th}} H R_{c}\left[g_{\alpha}(\mathcal{H} r)+\epsilon A(\eta, r)\right] \\
A(\eta, r) \equiv B(u), \quad u \equiv \mathcal{H} r=\operatorname{Har}
\end{gathered}
$$

■ Plots of $B(p)$ for various parameters of Starobinsky's model

- Here again the fifth force is small.

Summary

■The effective EoS parameter w deviates from -1 in $f(R)$ gravity.

■In the previous work, the thin-shell solution was naively used to a cosmological situation and it was concluded that w must be extremely close to -1 . This is incorrect because the time derivative becomes important in a cosmological scale.

- We took time derivative into consideration and constructed a scalar configuration with small fifth force in the case where w deviates appreciably from -1 .
\rightarrow Models with $|1+w| \sim O(0.1)$ can not be excluded by the fifth-force constraint.

