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Introduction: Gravitational waves and new physics

Stochastic gravitational wave signals are  
predicted by physics beyond the Standard Model: 
!
　topological defects (cosmic string, domain wall) !
　first order phase transition !
　preheating !
　quantum fluctuations during inflation
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We have shown that  
cosmic strings generally form after the end of inflation  
in supersymmetric theories.  !
These cosmic strings emit observable gravitational wave signals  
and can be used as a probe of supersymmetric scale!

Supersymmetric theories are well-motivated,  
because it addresses the hierarchy problem  
and also achieves gauge coupling unification.
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Supersymmetric theories usually predict many 
complex scalar fields (called flat directions)  
whose potentials are absent except for soft terms.  
!
!
!
The dynamics of such flat directions is nontrivial  
during and after inflation 

Flat directions in supersymmetric theories

B-L

LHu -1
HuHd 0
udd -1
LLe -1
QdL -1
QQQL 0
QuQd 0
QuLe 0
uude 0
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QuQue 1
QQQQu 1
(QQQ)4LLLe -1
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flat directions  
in the MSSM

Affleck, Dine, 85 
Dine, Randall, Thomas, 96

Gherghetta, Kilda, Martin, 95
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Inflation and Hubble-induced terms

Inflation is driven by a finite vacuum energy density,  
which affect the potentials of flat directions  
through supergravity effects:
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Inflation and Hubble-induced terms

After inflation ends, the energy density of the Universe 
is dominated by that of inflaton oscillation, which again 
induces the following potentials:
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In general,          (during inflation)               (after inflation) 
!
When                 during inflation and                 after inflation,  !
global cosmic strings form after inflation

cH 6= cH
cH > 0 cH < 0

V (�) = m2
� |�|

2 + cHH2 |�|2 + aHH2 |�|
2n�2

M2n�4
Pl

during  
inflation

after  
inflation

(M⇤  MPl)

|cH | ⇠
✓
MPl

M⇤

◆2

c̃0H
İ2
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Inflation and Hubble-induced terms

During inflaton oscillation era, the Hubble parameter 
decreases with time as  
!
!
Cosmic strings disappear at the time of 
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　the number of cosmic strings in the Hubble volume               (scaling law) 
!
　energy density per unit length 
!
　width of a typical cosmic string
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Kamada and M.Y., 14

Properties of cosmic strings 
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3+1 dim simulation of cosmic string formation

Horizon length
width of cosmic strings / H�1

conformal time 
τ = 32 Hi-1
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conformal time 
τ = 44 Hi-1

Horizon length
width of cosmic strings / H�1

3+1 dim simulation of cosmic string formation
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conformal time 
τ = 64 Hi-1

Horizon length
width of cosmic strings / H�1

3+1 dim simulation of cosmic string formation
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conformal time 
τ = 70 Hi-1

Horizon length
width of cosmic strings / H�1

3+1 dim simulation of cosmic string formation
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3+1 dim simulation of cosmic string formation

Horizon length
width of cosmic strings / H�1

conformal time 
τ = 100 Hi-1
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The energy density of GWs can be estimated by the quadrupole approximation. 
!
Quadrupole moment for an object with mass M:  !
GW energy emitted by the object: 

Q ⇠ H�2M ⇠ H�3µ
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Pl

...
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GW spectrum

　the number of cosmic strings in the Hubble volume               (scaling law) 
!
　width of a typical cosmic string ⇠ H�1

= O(1)

→ cosmic strings emit GWs  
with a peak wavenumber kpeak ' aH(t)
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energy density of GWs can be calculated from the following formula:

⇢gw =
1

32⇡G

D
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Because of the loss of causality at the large scale,  
wavenumber dependence at a scale larger than the Hubble scale  
is determined independently of the detail of

GW spectrum bends at k ' aH(tRH)

⌦gw / k3
⌦gw / k

Dufaux, et.al. 07 
Kawasaki, Saikawa, 11TTT

ij

GW spectrum

for modes entering the horizon during MD !
for modes entering the horizon during RD
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cosmic strings disappear at the time of  !
Thus, GW spectrum is “fixed” at this time
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present energy density:

present peak frequency:

present bend frequency:

We can probe  !
through GW detection experiments!
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We have investigated the dynamics of a flat direction, which usually exists in 
supersymmetric theories,  
and have shown that cosmic strings generally form after inflation.  
!
!
These cosmic strings disappear at the time of  
!
!
We can obtain  
the soft mass of the flat direction          ,  
the reheating temperature of the Universe           , 
and the cut-off scale 
through detection of GWs emitted from cosmic strings. 

Kamada and M.Y., 14

Summary
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