## Self-production of Scalar Gravitons after Starobinsky Inflation



Yuki Watanabe

Research Center for the Early Universe (RESCEU), University of Tokyo
arXiv:1405.3830 with N. Takeda PRD 90, 023519 (2014)

APCosPA Summer School on Cosmology and Particle Astrophysics, Matsumoto, Nagano 3rd Aug. 2014

History of the Universe


## Which model of inflation is correct?

O Observational constraints on inflation as of 3/2013 [Planck 2013]
O R2 inflation is in good shape! ( $\mathrm{n}_{\mathrm{s}}=0.964, \mathrm{r}=3.9 \times 10^{-3}$ for $\mathrm{N}=55$ ) Can we further confirm or falsify it with Planck 2014?


## Starobinsky R² Inflation [Starobinsky 1980]

$$
\begin{aligned}
S & =\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g}\left(R+\frac{R^{2}}{6 M^{2}}\right)+S_{m} \\
S_{m} & =\int d^{4} x \sqrt{-g}\left[-\frac{1}{2}(\nabla \sigma)^{2}-V(\sigma)\right] \leftarrow \text { Higgs and other SM particles. }
\end{aligned}
$$

- One of the oldest models of Inflation, before models of Sato and Guth
- A single parameter M characterizes the model.


## $R^{2}$ Inflation as scalar-tensor theory

## [Whitt 1984; Maeda 1988]

$$
\begin{aligned}
S_{J} & =\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-\hat{g}}\left(\hat{R}+\frac{\hat{R}^{2}}{6 M^{2}}\right)+S_{m} \\
S_{m} & =\int d^{4} x \sqrt{-\hat{g}}\left[-\frac{1}{2}(\hat{\nabla} \hat{\sigma})^{2}-V(\hat{\sigma})\right]
\end{aligned}
$$

Jordan frame $\hat{g}_{\mu \nu}$
Einstein frame $g_{\mu \nu}$

$$
\begin{aligned}
g_{\mu \nu}=\hat{g}_{\mu \nu} \Omega^{2} & \Omega^{2}=2 \kappa^{2}\left|\frac{\partial \mathcal{L}_{J}}{\partial \hat{R}}\right|=1+\frac{\hat{R}}{3 M^{2}} \equiv e^{\sqrt{\frac{2}{3}} \kappa \varphi} \\
& \hat{R}=\Omega^{2}\left[R+3 \square\left(\ln \Omega^{2}\right)-\frac{3}{2} g^{\mu \nu} \partial_{\mu}\left(\ln \Omega^{2}\right) \partial_{\nu}\left(\ln \Omega^{2}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
S_{E}=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{2}(\nabla \varphi)^{2}-U(\varphi)-\frac{1}{2} e^{-\sqrt{\frac{2}{3}} \kappa \varphi}(\nabla \hat{\sigma})^{2}-e^{-\sqrt{\frac{8}{3}} \kappa \varphi} V(\hat{\sigma})\right] \\
U(\varphi)=\frac{3}{4} M^{2} M_{p}^{2}\left(1-e^{-\sqrt{\frac{2}{3}} \kappa \varphi}\right)^{2}=\left\{\begin{array}{ccc}
\frac{3}{4} M^{2} M_{p}^{2} & \text { for } & \varphi \gg \varphi_{f} \\
\frac{1}{2} M^{2} \varphi^{2} & \text { for } & \varphi \ll \varphi_{f}
\end{array}\right\}
\end{gathered}
$$

## $\mathbf{R}^{2}$ Inflation [Starobinsky 1980]



$$
U(\varphi)=\frac{3}{4} M^{2} M_{p}^{2}\left(1-e^{-\sqrt{\frac{2}{3}} \kappa \varphi}\right)^{2}=\left\{\begin{array}{lll}
\frac{\frac{3}{4} M^{2} M_{p}^{2}}{\frac{1}{2} M^{2} \varphi^{2}} & \text { for } & \varphi \gg \varphi_{f} \\
\text { for } & \varphi \ll \varphi_{f}
\end{array}\right\}
$$

## $\mathbf{R}^{2}$ Inflation [Starobinsky 1980]



$$
U(\varphi)=\frac{3}{4} M^{2} M_{p}^{2}\left(1-e^{-\sqrt{\frac{2}{3}} \kappa \varphi}\right)^{2}=\left\{\begin{array}{ccc}
\frac{3}{4} M^{2} M_{p}^{2} & \text { for } \quad \varphi \gg \varphi_{f} \\
\frac{1}{2} M^{2} \varphi^{2} & \text { for } & \varphi \ll \varphi_{f}
\end{array}\right\}
$$

## Gravitational reheating by scalaron decay

[YW \& Komatsu gr-qc/0612120; YW 1011.3348 ]

$$
\begin{aligned}
\sigma \equiv & e^{-\frac{\kappa}{\sqrt{6}} \varphi} \hat{\sigma} \\
& \mathcal{L}_{\text {scalar }}=-\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma-\frac{\kappa \sigma}{\sqrt{6}} \partial_{\mu} \sigma \partial^{\mu} \varphi-\frac{\kappa^{2} \sigma^{2}}{12} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m_{\sigma}^{2}}{2} e^{-\frac{2}{\sqrt{6}} \kappa \varphi} \sigma^{2} \\
\psi \equiv & e^{-\frac{3 \kappa}{2 \sqrt{6}} \varphi} \hat{\psi}
\end{aligned}
$$

$$
\mathcal{L}_{\text {fermion }}=-\bar{\psi} \not D \psi-e^{-\frac{1}{\sqrt{6}} \kappa \varphi} m_{\psi} \bar{\psi} \psi
$$

$$
\mathcal{L}_{3 \mathrm{leg}}=\frac{1}{\sqrt{6} M_{\mathrm{Pl}}} \varphi \partial^{\mu} \sigma \partial_{\mu} \sigma+\frac{2 m_{\sigma}^{2}}{\sqrt{6} M_{\mathrm{Pl}}} \varphi \sigma^{2}+\frac{m_{\psi}^{2}}{\sqrt{6} M_{\mathrm{Pl}}} \varphi \bar{\psi} \psi
$$



## Gravitational reheating by scalaron decay

[YW \& Komatsu gr-qc/0612120; YW 1011.3348 ]
$\Gamma(\varphi \rightarrow \sigma \sigma)=\frac{\mathcal{N}_{\sigma}\left(M^{2}+2 m_{\sigma}^{2}\right)^{2}}{192 \pi M_{\mathrm{Pl}}^{2} M}$
$\simeq \frac{\mathcal{N}_{\sigma} M^{3}}{192 \pi M_{\mathrm{Pl}}^{2}}+\frac{\mathcal{N}_{\sigma} m_{\sigma}^{2} M}{48 \pi M_{\mathrm{Pl}}^{2}} \quad \Gamma(\varphi \rightarrow \bar{\psi} \psi)=\frac{\mathcal{N}_{\psi} m_{\psi}^{2} M}{48 \pi M_{\mathrm{Pl}}^{2}}$
$H_{\mathrm{rh}}=\Gamma$
$T_{\mathrm{rh}} \simeq 0.1 \sqrt{\Gamma_{\text {tot }} M_{p}}\left(\frac{\mathcal{N}_{\mathrm{tot}}}{100}\right)^{-1 / 4}$


## Gravitational reheating by scalaron decay

## [YW \& Komatsu gr-qc/0612120; YW 1011.3348 ]

$\Gamma(\varphi \rightarrow \sigma \sigma)=\frac{\mathcal{N}_{\sigma}\left(M^{2}+2 m_{\sigma}^{2}\right)^{2}}{192 \pi M_{\mathrm{Pl}}^{2} M}$
$\begin{aligned} & \simeq \frac{\mathcal{N}_{\sigma} M^{3}}{192 \pi M_{\mathrm{Pl}}^{2}}+\frac{\mathcal{N}_{\sigma} m_{\sigma}^{2} M}{48 \pi M_{\mathrm{Pl}}^{2}} \quad \Gamma(\varphi \rightarrow \bar{\psi} \psi)=\frac{\mathcal{N}_{\psi} m_{\psi}^{2} M}{48 \pi M_{\mathrm{Pl}}^{2}} \\ & \text { Leading term } T_{\mathrm{rh}} \simeq 0.1 \sqrt{\Gamma_{\text {tot }} M_{p}}\left(\frac{\mathcal{N}_{\text {tot }}}{100}\right)^{-1 / 4} \sim 10^{-9} M_{p},\end{aligned}$

$$
N_{*} \simeq 54+\frac{1}{3} \ln \left(\frac{T_{\mathrm{rh}}}{10^{9} \mathrm{GeV}}\right)
$$

If we know the matter sector (e.g. SM minimally coupled to gravity), inflationary predictions can be made without uncertainty.

## Predictions depend on reheating temperature

scalaron mass

$$
\begin{aligned}
M & \simeq 10^{-5} M_{p} \frac{4 \pi \sqrt{30}}{N_{*}}\left(\frac{\mathcal{P}_{\zeta}\left(k_{*}\right)}{2 \times 10^{-9}}\right)^{1 / 2} \\
& \sim 10^{-5} M_{p} \sim 10^{27} \mathrm{~cm}^{-1} \sim 10^{51} \mathrm{Mpc}^{-1},
\end{aligned}
$$

e-folds of inflation

$$
N_{*} \simeq 54+\frac{1}{3} \ln \left(\frac{T_{\mathrm{rh}}}{10^{9} \mathrm{GeV}}\right)
$$

grav. waves

$$
r=\frac{\mathcal{P}_{\gamma}(k)}{\mathcal{P}_{\zeta}(k)} \simeq 16 \epsilon \simeq \frac{12}{N_{*}^{2}}
$$

tilt and running of spectra

$$
\begin{aligned}
n_{s}-1 & =\frac{d \ln \mathcal{P}_{\zeta}(k)}{d \ln k} \simeq-6 \epsilon_{V}+2 \eta_{V} \simeq-\frac{2}{N_{*}}, \\
n_{t} & =\frac{d \ln \mathcal{P}_{\gamma}(k)}{d \ln k} \simeq-2 \epsilon_{V} \simeq-\frac{3}{2 N_{*}^{2}}, \\
\frac{d n_{s}}{d \ln k} & \simeq 16 \epsilon_{V} \eta_{V}-24 \epsilon_{V}^{2}-2 \xi_{V}^{2} \simeq-\frac{2}{N_{*}^{2}}, \\
\frac{d n_{t}}{d \ln k} & \simeq 4 \epsilon_{V} \eta_{V}-8 \epsilon_{V}^{2} \simeq-\frac{3}{N_{*}^{3}},
\end{aligned}
$$

## No ambiguity in reheating?

- During the oscillations of the inflaton, pamaretric resonance (preheating) may happen. [Kofman, Linde, Starobinsky 1994]
- If it happens, long-living localized objects (oscillons/l-balls) would be formed, making the inflaton decay non-perturbative. [Amin, Easther et al 2012]

$$
V(\phi)=\frac{m^{2} M^{2}}{2 \alpha}\left[\left(1+\frac{\phi^{2}}{M^{2}}\right)^{\alpha}-1\right]
$$



## Preheating in $\mathbf{R}^{\mathbf{2}}$ inflation (Minkowski) [Takeda \& YW 1405.3830]

$$
\begin{aligned}
& \phi(x, t)=\phi_{0}(t)+\delta \phi(x, t) \\
& \delta \ddot{\phi}_{k}+\omega_{k}^{2} \delta \phi_{k}=0 \\
& \omega_{k}^{2}=k^{2}+M^{2}\left[1+\frac{7}{6}\left(\frac{\Phi}{M_{p}}\right)^{2}\right] \\
& \quad-\sqrt{6} M^{2} \frac{\Phi}{M_{p}} \cos (M t)+\frac{7}{6} M^{2}\left(\frac{\Phi}{M_{p}}\right)^{2} \cos (2 M t) \\
& \quad \delta \phi_{k}^{\prime \prime}+\left[A_{1 k}-2 q_{1} \cos (2 \hat{T})\right] \delta \phi_{k}=0
\end{aligned}
$$



$$
\begin{aligned}
q_{1} & \equiv 2 \sqrt{6} \frac{\Phi}{M_{p}}, \\
A_{1 k} & \equiv 4+4\left(\frac{k}{M}\right)^{2}+\frac{7}{36} q_{1}^{2}
\end{aligned}
$$

2nd narrow resonance:

$$
0 \leq \frac{k}{M}<\frac{q_{1}}{3 \sqrt{2}}
$$

$$
-\frac{q^{2}}{12}<A_{k}-4<\frac{5 q^{2}}{12}
$$

$$
\Phi<0.2 M_{p}
$$

Broad resonance: $|d \omega / d t| / \omega^{2}>1 \quad 0.2 M_{p} \lesssim \Phi \lesssim 2 M_{p}$

$$
\left(\frac{k}{M}\right)^{2}<-1-\frac{7}{6}\left(\frac{\Phi}{M_{p}}\right)^{2}+\sqrt{6} \frac{\Phi}{M_{p}} \cos (M t)+\left(\frac{3}{2}\right)^{\frac{1}{3}}\left(\frac{\Phi}{M_{p}}\right)^{\frac{2}{3}}|\sin (M t)|^{\frac{2}{3}}
$$

## Parametric resonant spectrum

[Takeda \& YW 1405.3830]


## Preheating in $\mathbf{R}^{\mathbf{2}}$ inflation (Friedmann) [Takeda \& YW 1405.3830]



Without back-reaction from metric, Hubble damping wins over instabilities.

Mukhanov-Sasaki eqn.

With back-reaction from metric, preheating is balanced with Hubble damping.

$$
\delta \ddot{\phi}_{k}+3 H \delta \dot{\phi}_{k}+\underline{\left[\frac{k^{2}}{a^{2}}+V^{\prime \prime}\left(\phi_{0}\right)+\Delta F\right] \delta \phi_{k}=0, ~}
$$

Back-reaction from metric:

$$
\Delta F \equiv \frac{2 \dot{\phi}_{0}}{M_{p}^{2} H} V^{\prime}\left(\phi_{0}\right)+\frac{\dot{\phi}_{0}^{2}}{M_{p}^{4} H^{2}} V\left(\phi_{0}\right)
$$

## Metric preheating in $\mathbf{R}^{\mathbf{2}}$ inflation [Takeda \& YW 1405.3830]

$$
\begin{aligned}
& \phi_{0}(t) \simeq \phi_{0}\left(t_{\mathrm{ini}}\right)\left(\frac{a_{\mathrm{ini}}}{a}\right)^{\frac{3}{2}} \sin (M t) \\
& \omega_{k}^{2} \simeq \frac{k^{2}}{a^{2}}+M^{2}\left(1-\sqrt{6} \frac{\phi_{0}}{M_{p}}+\frac{2 \dot{\phi}_{0} \phi_{0}}{H M_{p}^{2}}\right) \\
& {\widetilde{\delta \phi_{k}}}^{\prime \prime}+\left[A_{3 k}-2 q_{3} \cos (2 \hat{T})\right] \widetilde{\delta \phi_{k}}=0 \\
& q_{3} \equiv \frac{a_{\mathrm{ini}}^{3} \phi_{0}^{2}\left(t_{\mathrm{ini}}\right) M}{2 a^{3} H M_{p}^{2}}, \quad A_{3 k} \equiv 1+\frac{k^{2}}{a^{2} M^{2}} \\
& \widetilde{\delta \phi_{k}} \equiv a^{3 / 2} \delta \phi_{k}
\end{aligned}
$$



1 st narrow resonance: $-q^{2}<A_{k}-1<q^{2}$,

$$
0 \leq \frac{k}{M} \lesssim a_{\mathrm{ini}} H_{\mathrm{ini}} \sqrt{\frac{3 a_{\mathrm{ini}}}{a H M}} \propto a^{1 / 2}
$$

## Conclusion

- We are now in the golden age of cosmology. Data is getting more and more precise, and even a surprise is coming! The detection of inflationary gravitational waves by BICEP2 will be confirmed or falsified by Planck 10/2014.
- The physics of reheating affects precise predictions of inflationary models. Oscillons/l-balls do not form after Starobinsky inflation, thereby reheating proceeds through perturbative particle production of Higgs with $T_{\mathrm{rh}} \simeq 10^{9} \mathrm{GeV}$ and $N_{*} \simeq 54$.
- Halos and PBHs ( $M_{\mathrm{nl}} \simeq 4 \times 10^{6} \mathrm{~g}$ ) may be formed by metric preheating after Starobinsky inflation since $\delta \rho / \rho \propto a$ for ~13 e-folds. [cf. Jedamzik, Lemoine, Martin 2010]

