Self-production of Scalar Gravitons after Starobinsky Inflation

Yuki Watanabe

Research Center for the Early Universe (RESCEU), University of Tokyo

arXiv:1405.3830 with N. Takeda PRD 90, 023519 (2014)

APCosPA Summer School on Cosmology and Particle Astrophysics, Matsumoto, Nagano

3rd Aug. 2014

History of the Universe

Which model of inflation is correct?

- Observational constraints on inflation as of 3/2013 [Planck 2013]
- R2 inflation is in good shape! (n_s = 0.964, r = 3.9 x 10⁻³ for N = 55) Can we further confirm or falsify it with Planck 2014?

Starobinsky R² Inflation [Starobinsky 1980]

$$\begin{split} S &= \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R + \frac{R^2}{6M^2} \right) + S_m \\ S_m &= \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\nabla \sigma)^2 - V(\sigma) \right] \leftarrow \text{Higgs and other SM particles.} \end{split}$$

- One of the oldest models of Inflation, before models of Sato and Guth
- A single parameter M characterizes the model.

R² Inflation as scalar-tensor theory

[Whitt 1984; Maeda 1988]

$$S_{J} = \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-\hat{g}} \left(\hat{R} + \frac{\hat{R}^{2}}{6M^{2}} \right) + S_{m}$$
$$S_{m} = \int d^{4}x \sqrt{-\hat{g}} \left[-\frac{1}{2} (\hat{\nabla}\hat{\sigma})^{2} - V(\hat{\sigma}) \right]$$

Jordan frame
$$\hat{g}_{\mu\nu}$$

 \downarrow $g_{\mu\nu} = \hat{g}_{\mu\nu}\Omega^2$ $\Omega^2 = 2\kappa^2 \left|\frac{\partial \mathcal{L}_J}{\partial \hat{R}}\right| = 1 + \frac{\hat{R}}{3M^2} \equiv e^{\sqrt{\frac{2}{3}}\kappa\varphi}$
Einstein frame $g_{\mu\nu}$ $\hat{R} = \Omega^2 [R + 3\Box(\ln\Omega^2) - \frac{3}{2}g^{\mu\nu}\partial_{\mu}(\ln\Omega^2)\partial_{\nu}(\ln\Omega^2)]$

$$S_{\boldsymbol{E}} = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} (\nabla \boldsymbol{\varphi})^2 - U(\boldsymbol{\varphi}) - \frac{1}{2} e^{-\sqrt{\frac{2}{3}}\kappa \boldsymbol{\varphi}} (\nabla \hat{\sigma})^2 - e^{-\sqrt{\frac{8}{3}}\kappa \boldsymbol{\varphi}} V(\hat{\sigma}) \right]$$

$$U(\varphi) = \frac{3}{4} M^2 M_p^2 \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^2 = \begin{cases} \frac{3}{4} M^2 M_p^2 & \text{for } \varphi \gg \varphi_f \\ \frac{1}{2} M^2 \varphi^2 & \text{for } \varphi \ll \varphi_f \end{cases}$$

 φ : Scalaron = Inflaton

R² Inflation [Starobinsky 1980]

$$U(\varphi) = \frac{3}{4} M^2 M_p^2 \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^2 = \left\{ \begin{array}{l} \frac{3}{4} M^2 M_p^2 \\ \frac{1}{2} M^2 \varphi^2 & \text{for} \quad \varphi \ll \varphi_f \\ \frac{1}{2} M^2 \varphi^2 & \text{for} \quad \varphi \ll \varphi_f \end{array} \right\}$$

R² Inflation [Starobinsky 1980]

$$U(\varphi) = \frac{3}{4} M^2 M_p^2 \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^2 = \begin{cases} \frac{3}{4} M^2 M_p^2 & \text{for } \varphi \gg \varphi_f \\ \frac{1}{2} M^2 \varphi^2 & \text{for } \varphi \ll \varphi_f \end{cases}$$

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348]

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348]

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348]

$$\begin{split} \Gamma(\varphi \to \sigma \sigma) &= \frac{\mathcal{N}_{\sigma} (M^2 + 2m_{\sigma}^2)^2}{192\pi M_{\rm Pl}^2 M} \\ &\simeq \frac{\mathcal{N}_{\sigma} M^3}{192\pi M_{\rm Pl}^2} + \frac{\mathcal{N}_{\sigma} m_{\sigma}^2 M}{48\pi M_{\rm Pl}^2} \quad \Gamma(\varphi \to \bar{\psi}\psi) = \frac{\mathcal{N}_{\psi} m_{\psi}^2 M}{48\pi M_{\rm Pl}^2} \\ \hline \\ \textbf{Leading term} \\ T_{\rm rh} &\simeq 0.1 \sqrt{\Gamma_{\rm tot} M_p} \left(\frac{\mathcal{N}_{\rm tot}}{100}\right)^{-1/4} \sim 10^{-9} M_p, \\ N_* &\simeq 54 + \frac{1}{3} \ln \left(\frac{T_{\rm rh}}{10^9 \ {\rm GeV}}\right), \end{split}$$

If we know the matter sector (e.g. SM minimally coupled to gravity), inflationary predictions can be made without uncertainty.

Predictions depend on reheating temperature

scalaron mass

$$M \simeq 10^{-5} M_p \frac{4\pi\sqrt{30}}{N_*} \left(\frac{\mathcal{P}_{\zeta}(k_*)}{2 \times 10^{-9}}\right)^{1/2}$$
$$\sim 10^{-5} M_p \sim 10^{27} \text{cm}^{-1} \sim 10^{51} \text{Mpc}^{-1},$$

e-folds of inflation

$$N_* \simeq 54 + \frac{1}{3} \ln \left(\frac{T_{\rm rh}}{10^9 \,\,{\rm GeV}} \right),$$

grav. waves

tilt and running of spectra

$$r = \frac{\mathcal{P}_{\gamma}(k)}{\mathcal{P}_{\zeta}(k)} \simeq 16\epsilon \simeq \frac{12}{N_*^2}.$$

$$n_s - 1 = \frac{d \ln \mathcal{P}_{\zeta}(k)}{d \ln k} \simeq -6\epsilon_V + 2\eta_V \simeq -\frac{2}{N_*},$$
$$n_t = \frac{d \ln \mathcal{P}_{\gamma}(k)}{d \ln k} \simeq -2\epsilon_V \simeq -\frac{3}{2N_*^2},$$
$$\frac{dn_s}{d \ln k} \simeq 16\epsilon_V \eta_V - 24\epsilon_V^2 - 2\xi_V^2 \simeq -\frac{2}{N_*^2},$$
$$\frac{dn_t}{d \ln k} \simeq 4\epsilon_V \eta_V - 8\epsilon_V^2 \simeq -\frac{3}{N_*^3},$$

No ambiguity in reheating?

- During the oscillations of the inflaton, pamaretric resonance (preheating) may happen. [Kofman, Linde, Starobinsky 1994]
- If it happens, long-living localized objects (oscillons/l-balls) would be formed, making the inflaton decay non-perturbative.
 [Amin, Easther et al 2012]

$$V(\phi) = \frac{m^2 M^2}{2\alpha} \left[\left(1 + \frac{\phi^2}{M^2} \right)^{\alpha} - 1 \right]$$

FIG. 1: Floquet diagram with $\alpha = 1/2$, $\beta = 100$. The stable regions are dark red. Within the unstable bands, lighter colors

FIG. 2: Oscillon configuration with $\alpha = 1/2$ and $\beta = 50$. The top plot shows regions where $\rho/\langle \rho \rangle > 4$ (transparent) and 12 (solid), while the lower plot shows $\rho/\langle \rho \rangle$ on a two dimensional

Broad resonance: $|d\omega/dt|/\omega^2 > 1$ $0.2M_p \lesssim \Phi \lesssim 2M_p$ $\left(\frac{k}{M}\right)^2 < -1 - \frac{7}{6} \left(\frac{\Phi}{M_p}\right)^2 + \sqrt{6} \frac{\Phi}{M_p} \cos(Mt) + \left(\frac{3}{2}\right)^{\frac{1}{3}} \left(\frac{\Phi}{M_p}\right)^{\frac{2}{3}} |\sin(Mt)|^{\frac{2}{3}},$

Parametric resonant spectrum

[Takeda & YW 1405.3830]

in R² inflation (Friedmann) [Takeda & YW 1405.3830] Ŋ

tM=C

0.1

100

10

k[M]

preheating is balanced with

Hubble damping.

Metric preheating in R² inflation [Takeda & YW 1405.3830]

lst narrow resonance: $-q^2 < A_k - 1 < q^2$,

Conclusion

- We are now in the golden age of cosmology. Data is getting more and more precise, and even a surprise is coming! The detection of inflationary gravitational waves by BICEP2 will be confirmed or falsified by Planck 10/2014.
- The physics of reheating affects precise predictions of inflationary models. Oscillons/I-balls do not form after Starobinsky inflation, thereby reheating proceeds through perturbative particle production of Higgs with $T_{\rm rh} \simeq 10^9 {\rm GeV}$ and $N_* \simeq 54$.
- Halos and PBHs ($M_{\rm nl}\simeq 4\times 10^6{\rm g}$) may be formed by metric preheating after Starobinsky inflation since $\delta\rho/\rho\propto a~$ for ~13 e-folds. [cf. Jedamzik, Lemoine, Martin 2010]