Determining Flavor Ratio of Diffuse Ultra-High Energy Cosmic Neutrinos by Event Direction Distribution of Askaryan Radio Array

Shih-Hao Wang 王士豪

Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University

This talk is based on our published work: S.H. Wang, P. Chen, J. Nam, and M. Huang, JCAP 11 (2013) 062; arXiv:1302.1586

<u>Outline</u>

- What's Ultra-high energy cosmic neutrino (UHECN)?
- What's important about UHECN flavor composition?
- Detecting UHECN with ARA observatory at South Pole
- Constraining UHECN flavor ratio with event angular distribution
- Summery and future work

Ultra-High Energy Cosmic Rays & Neutrinos

from http://www.physics.utah.edu/~whanlon/spectrum.html

Cosmic rays with E > 10¹⁸ eV (UHECR) are observed.

Source (AGN, GRB)?

Acceleration mechanism?

- Neutrinos can be generated when UHECR interact with photon or matter
 - CMB photon \rightarrow GZK cutoff in CR spectrum

Astrophysical:
$p + p \text{ or } p + \gamma \rightarrow \pi^{\pm} + \dots$
Cosmogenic:
$p + \gamma_{CMB} \to \Delta^+ \to \pi^+ + n$
Charged pion decay

UHECN as Cosmic Messenger

- Being electrically neutral and weakly interacting, UHECNs carry information from the sources
 - Energy spectrum
 - CR composition, source distribution, max acceleration energy
 - Flavor ratio: relative flux between ν_e: ν_μ: ν_τ
 - Source size & B-field strength $\pi^+ \rightarrow \mu^+ + \nu_{\mu} \rightarrow e^+ + \nu_{\mu} + \nu_e + \bar{\nu}_{\mu}$ → ratio transition with E_v (1:2:0→0:1:0) decay v.s. synchrotron cooling

Kotera et al., JCAP10 (2010); 013; S. Hümmer et al., Astropar. Phys. 34, 205 (2010).

<u>UHECN as Beam Experiment</u>

UHECN is an unique probe with

- Extremely high energy (>10¹⁷ eV)
- Extremely traveling distance(>Mpc)
 Flavor ratio at Earth is
 determined by :
- Flavor ratio at source
- Flavor transition in propagation
 - Neutrino oscillation
 - Non-standard physics?
 - Neutrino decay & mass hierarchy
 Sterile neutrinos with small Δm²
 CPT violation Lerentz violation etc.
 - CPT violation, Lorentz violation, etc.

0:1:1

1:2:2

Inverted

None

J. Beacom et al., Phys. Rev. Lett. 90, 181301 (2003). J. Beacom et al., Phys. Rev. D 68, 093005 (2003)

0:1:0

J. Beacom et al. , Phys. Rev. Lett. 92, 011101 (2004); G. Barenboim and C. Quigg, Phys. Rev. D 67, 073024 (2003); D. Hooper et al., Phys. Rev. D 72, 065009 (2005).

P. Keraenen et al., Phys. Lett. B 574, 162 (2003)

0

0.2

Askaryan Radio Array at South Pole

Antarctic ice as target vast, quiet, and clean Askaryan effect radio Cherenkov pulse 37 stations, 3 deployed ~200km² coverage NTU participates ~50 UHECN events is expected in 3 year

Allison et al. (ARA collaboration), Astropar. Phys. 35, 457 (2012), Allison et al. , arXiv:1404.5285; http://ara.wipac.wisc.edu/home 6

NTU team successfully constructed ARA2 & ARA3 in 2012

DAQ

Antenna

RF over Fiber

Low Noise Amplifier

South Pole Expedition for ARA 1 (2011-12), 2 &3 (2012-13) Deployment

http://dima.lbl.gov/work/MUONPR/

r from reciever (km)

Expected Arrival Zenith Angular Distribution of Neutrino Events in ARA

Neutrino CC interaction produces charged lepton $v_l N \rightarrow l X$ Different energy-loss properties of charged leptons in matter lead to different event angular distribution v_{τ} distribution is the most different

τ decay

• v_{τ} regeneration ($v_{\tau} \rightarrow \tau \rightarrow v_{\tau}$). v_{e} and v_{μ} have similar shapes, extra constraint is required

- υ_μ -ν_τ symmetry is assumed (i.e. the are of equal ratio).
- Initial ratio 1:1:1 → detected ratio 0.59:0.15:0.26

By fitting event angular distribution, UHECN flavor ratio can be extracted 10

Success Probability of Extracting v_e Fraction

v_e Fraction f_e=[0,1]
 ■ expected f_e = 1/3 (standard), 0.75 (decay w/ NH), o (decay w/ IH)

- ∴ random sampling, sometimes fitting gives unphysical f_e → fail
 Generate ensemble of data sets to get the success probability
 - depend on number of events and angular resolution

With angular resolution $\Delta \theta = 6^{\circ}$ and 200 events, the success probability is about 85%, 60%, and 50%, respectively

 $\Delta\theta = 0^{\circ} \text{ (red), } 2^{\circ} \text{ (green), } 4^{\circ} \text{ (blue), } 6^{\circ} \text{ (black)}$ 11

Resolution of Extracted v_e Fraction

v_e Fraction f_e=[0,1]
 ■ expected f_e = 1/3 (standard), 0.75 (decay w/ NH), o (decay w/ IH)

- : random sampling, extracted f_e may deviate from expected one
 - Generate ensemble of data sets to get the spread of extracted f_e
 - depend on number of events and angular resolution
- With angular resolution Δθ = 6° and 200 events, the resolution (~68%CL) is about 0.3, 0.4, and 0.15, respectively
 preliminary constraint on neutrino decay

 $\Delta \theta = \mathbf{0}^{\circ} \text{ (red), } 2^{\circ} \text{ (green), } 4^{\circ} \text{ (blue), } 6^{\circ} \text{ (black)}$ 12

Summary and Future Work

- Measuring UHECN flavor ratio is important in both astrophysics and particle physics
- By fitting the direction distribution of neutrino events, a preliminary constraint on its flavor ratio can be set for the planned ARA37 configuration.
- Additional information (e.g. event topology, Cherenkov pulse characteristics) can be exploited to improve the resolution.
 - Identification of v_e CC events.
 - Discrimination between electromagnetic and hadronic showers

Thanks for your attention!

10

F-4

2

Cosmic Neutrino Spectrum

Neutrino Flavor Ratios Are Related to the Physical Properties of Neutrino Sources

Hillas plot

Neutrino source type

Neutrino Oscillation

 Neutrinos change flavor during propagation.
 The flavor eigenstate is not identical to the mass eigenstate: flavor eigenstate $\alpha = e, \mu, \tau$ $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$ mass eigenstate i = 1,2,3

where U_{αi} 's are element of 3×3 mixing matrix.
 For cosmic neutrino, The neutrino flux at the source Φ_{vo} and that arriving on Earth Φ_v can be related by

$$\begin{pmatrix} \Phi_{\nu_e} \\ \Phi_{\nu_{\mu}} \\ \Phi_{\nu_{\tau}} \end{pmatrix} = \begin{pmatrix} P_{ee} & P_{e\mu} & P_{e\tau} \\ P_{\mu e} & P_{\mu\mu} & P_{\mu\tau} \\ P_{\tau e} & P_{\tau\mu} & P_{\tau\tau} \end{pmatrix} \begin{pmatrix} \Phi_{\nu_{e0}} \\ \Phi_{\nu_{\mu0}} \\ \Phi_{\nu_{\tau0}} \end{pmatrix} \simeq \begin{pmatrix} \frac{5}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{7}{18} & \frac{7}{18} \\ \frac{2}{9} & \frac{7}{18} & \frac{7}{18} \end{pmatrix} \begin{pmatrix} \Phi_{\nu_{e0}} \\ \Phi_{\nu_{\mu0}} \\ \Phi_{\nu_{\tau0}} \end{pmatrix}$$

$$P_{\alpha\beta} = \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

H. Athar, M. Jezabek, and O. Yosuda, Phys. Rev. D 62, 103007 (2000). R.L. Awasthi and S. Choubey, Phys. Rev. D 76, 113002 (2007). (tribimaximal mixing)

Neutrino Detection and Askaryan Effect

Neutrinos interact with matter via CC or NC interactions and induce showers. $v_l N \rightarrow lX$ $v_l N \rightarrow v_l X$

 $\left\{ \begin{array}{ll} \gamma + e^-_{atom} \to \gamma + e^- & \mbox{Compton scattering,} \\ e^+ + e^-_{atom} \to e^+ + e^- & \mbox{BhaBha scattering,} \\ e^- + e^-_{atom} \to e^- + e^- & \mbox{Møller scattering,} \\ e^+ + e^-_{atom} \to \gamma + \gamma & \mbox{electron-positron annihilation.} \end{array} \right.$

Increase in negative charges, and decrease in positive ones, developing into ~20% negative charge excess In dense medium, the shower size is compact, emitting coherent Cherenkov radiation at radio frequencies up to few GHz.

Interactions Included in MMC

The Resolution of v_e Fraction

Probability distribution of fitted v_e fraction for given N_{obs} and $\Delta \theta$

$$R_{\pm}(N_{\text{obs}}, \Delta \theta) = \sqrt{\frac{1}{N_{\text{s}} - 1} \sum_{i=1}^{N_{\text{s}}} (\hat{f}_{e,i} - f_{e,\text{exp}})^2}$$

The reconstructed e event ratio is a maximum likelihood estimator, and it can be shown that it is asymptotic to a Gaussian distribution as N_{obs} increases. So the resolution R is an approximation to the standard deviation σ of the Gaussian.

the spread of its distribution result from finite number of events and imperfect angular resolution.