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A multiple dark matter model

Dark matter evidence

VAN ALBADA ET AL.
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The universe is consists of 4.9% ordinary matter, 26.8%
dark matter (DM), and 68.3% dark energy Planck (2013)
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Dark matter can be referred to a single type of stable

particles thermalized with standard model (SM) particles
in early universe.

The weak interacting massive particle (WIMP) is a
good dark matter candidate to satisfy the relic
abundance and in the range of interest for direct
search

Basically, the stability of DM is necessary by the
Indirect search, unless the decay rate is extremely
small (life time > 10%s)

Single or multiple DM? related to the number of
symmetries
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A Majorana heavy neutrino Model

The radiative neutrino model by E. Ma can have both
small neutrino mass and stable dark matter

<H> <H>
new interaction L,,Y, N.n, ST
N N
& ” N
Z, symmetry is imposed RN LN L SRERAN LD
v N N Y%

If the active neutrino masses are generated radiatively,
then at least two N 's are necessary.

We introduce two additional gauge singlet fermions
N and N to the model as the double-component DM.

The two-body decaying processes can be

L(Y,N,+Y,N,)n, n isa SU(2) doublet scalar
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We can further consider the models with non-stable Nh,l

In general, to make DM N, , exist longer than 10%s, the
coupling constant should be Yh,|<10-25

To make the size of Yukawa coupling more natural,
Impose another doublet . The very heavy n with small
mixing with light doublet ¢ can suppress the decay rate

N, 7 N, 7
~ ~
n\IF ﬂ\lF
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Also has the three body decay channelN,» N +1'+1"’

wnT
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If one hope the two-body decay channel to be dominated

Take M ,>M.~TeV, Mq~10"TeV,u~1GeV,Y, ,~10™° 26
Take M.=300GeV , then N,=3030GeV, N,=416GeV =T,>107's

Npri1 Nra 1 € The Z, symmetries are required to make
the DM quasi stable.

Zy — = —+
7y o+ o+ +—

The soft-breaking term breaks both Z, and Z/,
but their combination is still conserved.

_ M M.
L =—Lp;(Y1;Ng1 + Y2;Ng2)n — 71(NR1)CNR1 — TQ(NRQ)CNR2 —piCtn -V

We will study the DM indirect signal in this model
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e* fluxes from multi-component DM decay

Fermi-LAT and AMS-02 observation
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The propagation of e* in the Galaxy

@e:ﬁf(E),f:energy density of CR in differential energy range

Diffusion equation describe the time evolution, spatial diffusion, and
energy loss of CR propagating in the Galaxy.

SL=V[K(E,7)V f1+-Z[b(E7) f1+ O(E,7)=0

Source of e*
K =D,(+)"is the diffusion coefficient

If the flux is steady and assuming the boundary for our
Galaxy is set to zero, then the electron/positron flux
can be expressed by

o= f(E)=<] G(E, E)Q(E")dE"
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Primary electrons come from the explosion of supernovae, active
galactic nuclei and Gamma-ray burst
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The dark matter (DM) as the source of &*

One possible solution: The electron (positron)
accelerated by pulsars Flead)e (11;3 )aexp(—bR/RS)exp(|z|/zS)

dN _
T “exp(—E/E.)

There are two ways to generate electron/positron from DM

1. annihilation:DM+ DM > [=+ X
2. DM decay:DM > [+ X

The source term Q is the number density CR generated in
unit time in differential energy

dN
Qannihilation_<()'v> p ( Z]}\; ) Qdecay: 1;5)\4 ( dE )
R’+R’
R+R’
0,=0.43GeV cm™, R ,=2.8kpcC
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We take the isothermal profile p(R)=p,




DM with two-body decaying into €*

Since the proton and antiproton excess was not found
from observation, the fermionphilic DM is favored,

DM =/ (I")+ X with a specific charged leton energy E,

The energy distribution of e* source — DM two-body
decaying is given by

(d—N) —e(dNe)+e<dN“)+e(dNr) with € + eu+ e-=1
dE 'tot °\ dE "\ dE ‘\gE V Fmy T R

(dNe ):L (x—1),x=E/E,

dE £
dN 1 4 >
( dE )ZE [3(1—x2)—§(1—x)]6(1—x),from u=2evy

(@
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Single DM as a new source of &*
The total flux of electron/positron can be expressed by

oL s primary secondary DM
PPt= ¢ PpPImavy s + @

tot _ 4,secondary DM
D=0 + P

Takeing M =3030GeV, fit {x,eu, €, T, E |

68 data points of AMS-02(42 points )+Fermi-LAT(26 points)

E, K €. Cu €. t(10°s) x>
1000 0.73 0.09 0 0.91 0.66 463
1300 0.72 0.04 0 0.96 0.71 516
1500 0.71 0.02 0 0.98 0.74 541
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DM with two-body decaying is not good for fitting to
Fermi-LAT and AMS-02 results, As pointed out in
many literature (Jin et .al, ....)

Single decaying channels of e p T are too 'hard'.
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Two component DM decaying scenario

Take M ,=3030GeV, M,=416GeV, E_,=1500GeV, E_,=100GeV

In the two DM scenario, we only open the muon two-body
decay for DM, and electron and tau channels for DM,
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(a) Total e +e” Fluxes
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Table 1.

1000

(b) Positron Fraction
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Parameters leading to the minimal values of x? with the cutoffs

of heavy DM being 1200, 1500 and 1800 GeV, respectively.

E.r(GeV) K €Y1 e o €1 7r1,1,(10%95)
1200 0.844  0.206,0.015  0.794,0 0,0.985 0.97,0.83
1500 0.844  0.058,0.020  0.942.0 0,0.980 0.78,0.82
1800 0.843 0,0.022 0.842,0  0.158,0.978 0.64,0.83
Geng, Huang, and LHT (2014)
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Gamma-ray signals
Pion decaying p+(H H,..)2=’+X, =a’->2y
Inverse Compton scattering (IC) and Bremsstrahlung

Isotropic extra galactic source (AGN)
O =518X10""E*"GeV s 'sricm”

extra

photon from prompt decaying of DM

Final state radiation DM > X+ > X+ [+
photon from electron effect from DM

DM contribution to IC far away from our galaxy

@y(b, )= [ dse(r), clr)= 28"2 i
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We focus on the region |b|<10°, | < 10°, [>350°

Fluxes of diffuse Gamma Ray
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Most of the constraints from gamma-ray is resulted by

tau channel; while muon channel can release it.
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Flux of Diffuse Gamma Rays
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Conclusion

 Double-component decaying DM model can explain
the combined results of AMS-02 and Fermi-LAT.

* The flux of gamma ray can satisfy the constraints from
Fermi-LAT measurement. The branching ratio of taun
channel for DM is also constrained.

* Note that the neutrino mass matrix generating through one
loop has zero elements Mw. To be consistent with

observation, another heavy neutrino N, should be
Imposed.

Thank you!
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