CMB μ distortion and primordial gravitational waves

<u>Atsuhisa Ota</u>¹, Tomo Takahashi², Hiroyuki Tashiro³ and Masahide Yamaguchi¹

¹Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
 ²Department of Physics, Saga University, Saga 840-8502, Japan
 ³Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602, Japan

Based on arXiv:1406.0451

< □ > < @ > < 분 > < 분 > 분 = 의 = 의 < 1/11

1 Introduction

- **2** A review of CMB μ distortion
- 3 Primordial GW as a source of CMB μ -distortion
- 4 Results and Summary

Introduction

Information of Primordial fluctuations in the CMB

CMB as observables of primordial fluctuations

There are two approaches:

- Temperature anisotropies ($k < 0.1 \text{Mpc}^{-1}$)
 - Local Planck distributions deviate from the averaged distribution
 - Direct detection of spacial fluctuation (Already detected)
- Spectrum distortions ($1Mpc^{-1} < k < 10^4Mpc^{-1}$)
 - Erased inhomogeneities form some distortions to the spectrum
 - Indirect detection of spatial fluctuation (Not yet detected)

A review of CMB μ distortion

Classification of distortions and Generation mechanisms

Classification of distortions

- Thermal distortion to Planck distribution $\rightarrow \mu$ type distortion i.e. Chemical potential of general Bose distribution
- \blacksquare Non-thermal distortion to thermal distribution $\rightarrow y$ type distortion

Steps to generate μ distortion

1 Photon production:

e.g. Acoustic damping, PBHs evaporation, darkmatter pair annihilation etc...

- 2 Thermalization under number conserving process
 - e.g. Compton scattering ($10^5 < z < 10^7$)

A review of CMB μ distortion

Constraints on Primordial fluctuations by μ distortion

- Scalar case: Hu et.al (1994), Chluba et.al (2012) etc...
 - Primordial curvature (temperature) perturbation \rightarrow Acoustic damping $\rightarrow \mu \sim 10^{-8}$ for $n_s = 1$, $A_\zeta \sim 10^{-9}$

- Tensor case: Our study
 - No acoustic damping (Tensor does not couple to baryon)
 - \blacksquare Primordial GW \rightarrow Temperature perturbation \rightarrow Thomson scattering

- **1** How primordial gravitational waves (GW) is related to the deviations?
- 2 Can we get some constraints on primordial GW from observations of CMB distortions?

Primordial GW as a source of CMB μ -distortion

Formulation of μ originate from GW

Integral solution

$$\langle \mu \rangle = -1.4 \times 4 \int_{\eta_0}^{\eta} d\eta' \mathcal{J}_{DC}(\eta') \langle \Theta^T \gamma \dot{\Theta^T}_{\gamma} \rangle$$

- $\mathcal{J}_{DC}(\eta')$ is a window function which suppresses μ by double Compton scattering and contains t_{μ}
- The Ensemble average is related to tensor power spectrum \mathcal{P}_T

Boltzmann-Einstein system

1 Linear Boltzmann equation for tensor type temperature perturbation:

$$\dot{\Theta}_{\gamma}^{T} = -n_{\rm e}\sigma_{T}(\Theta_{\gamma}^{T} - \Lambda) = \partial_{\eta}\Theta_{\gamma}^{T} + ik\lambda\Theta_{\gamma}^{T} + \frac{1}{2}\partial_{\eta}h$$

n_e is electron number density and σ_T is Thomson scattering cross section
Θ^T_γ = (1 − λ²) ∑[∞]_{l=1}(−i)^l(2l + 1)P_l(λ)Θ^T_{γl}
Λ = [³/₇₀Θ^T_{γ4} + ¹/₇Θ^T_{γ2} + ¹/₁₀Θ^T_{γ0} - ³/₇₀Θ^{PT}_{γ4} + ⁶/₇Θ^{PT}_{γ2} - ³/₅Θ^{PT}_{γ0}]
2 Substitute these to (♠)

μ distortion generated by primordial GW

$$\mu = 1.4 \cdot 4 \int_{\eta_0}^{\eta} d\eta' \int d\ln k \frac{\mathcal{P}_T(k)}{4} \mathcal{J}_{DC}(\eta') \dot{\tau} \left[\frac{12}{25} \Theta_{\gamma_0}^T \Theta_{\gamma_0}^T + \cdots \right]$$

Scale dependence of μ -distortion

- $d\mu/d\ln k$ with different spectrum index is drawn bellow
- Larger spectrum index, larger contribution
- Compare to the scalar case (right figure), contribution from larger scale is bigger since Thomson scattering smoothes larger scale than Acoustic damping does!

Constraints on tensor-to-scalar ratio and spectrum index

• $\mu < 10^{-5}$ (95% CL) is a constraint today by COBE FIRAS • $\mu < 10^{-8}$ is a constraint in the future by PIXIE observation • If r = 0.2 (BICEP2 suggestion), PIXIE can rule out $n_T > 1.0$

▶ 《母》 《토》 《토》 토⊫ '') 역 (?) 10/11

- We found a new generation mechanism of spectrum distortions by Thomson isotropic nature
- 2 We obtained constraints on tensor-to-scalar ratio and tensor spectrum index through CMB $\mu\text{-distortion alone}$
- **3** For r = 0.1 and $n_T = 0$, expected μ distortion is the order of 10^{-14}
- ⁴ Blue shifted spectrum will be ruled out by the PIXIE observation (e.g. r = 0.2 and $n_T = 1$ makes comparable μ from adiabatic scalar perturbation)

Mixing of Blackbodies under energy conservation law

1 Let's take two Blackbodies with $T + \delta T$ and $T - \delta T$, then mix them:

•
$$\rho_{\text{initial}} = \frac{\alpha}{2} [(T + \delta T)^4 + (T - \delta T)^4] = \alpha T^4 \left[1 + \frac{3}{2} \left(\frac{\delta T}{T} \right)^2 + \cdots \right]^2$$

• $n_{\text{initial}} = \frac{\beta}{2} [(T + \delta T)^3 + (T - \delta T)^3] = \beta T^3 \left[1 + \left(\frac{\delta T}{T} \right)^2 + \cdots \right]^3$

2 Energy conservation: $\rho_{initial} = \rho_{final}$

•
$$T_{\text{final}} = T \left[1 + \frac{3}{2} \left(\frac{\delta T}{T} \right)^2 + \cdots \right]$$

• $n_{\text{final}} = \beta T^3 \left[1 + \frac{9}{2} \left(\frac{\delta T}{T} \right)^2 + \cdots \right] \neq n_{\text{initial}}$

New system is not a blackbody under number conservation

Realized distribution function is Bose distribution with nonzero chemical potential!

Thermalization under the photon number conserving process makes μ -distortion

Mixing of Black bodies to a Bose distribution

 T_{BE} is temperature of Bose distribution

1 Energy density and Number density of Boson:

$$\rho = \alpha T_{\mathsf{BE}}^4 \left(1 - \frac{90\zeta(3)}{\pi^4} \mu \right)$$
$$n = \beta T_{\mathsf{BE}}^3 \left(1 - \frac{\pi^2}{6\zeta(3)} \mu \right)$$

2 Again imposing number conservation,

$$T_{\text{BE}} = T \left[1 + \left(\frac{\delta T}{T}\right)^2 + \frac{\pi^2}{18\zeta(3)}\mu + \cdots \right]$$

$$\rho_{\text{final}} = \alpha T^4 \left[1 + 4 \left(\frac{\delta T}{T}\right)^2 + \left(\frac{2\pi^2}{9\zeta(3)} - \frac{90\zeta(3)}{\pi^4}\right)\mu \right]$$

Initial energy perturbation $6\delta T^2/T^2$ goes into Two parts

- 1/3 makes distortions
- 2/3 raise average temperature

The distortion and temperature shift are the second order of temperature perturbation

Locally thermodynamic equilibrium

In cosmological perturbation theory,

- Distribution of photons is inhomogeneous
- But, locally thermodynamic equilibrium

Each spectra are locally thermodynamic equilibrium

$$f(x,\omega) = \frac{1}{e^{\frac{\omega}{T_{\mathsf{BE}}(x)} + \mu(x)} - 1}$$

We can write down energy and number density to the first order of $\boldsymbol{\mu}$

•
$$\rho(x) = \alpha T_{\mathsf{BE}}^4(x) \left(1 - \frac{90\zeta(3)}{\pi^4}\mu(x)\right)$$

• $n(x) = \beta T_{\mathsf{BE}}^3(x) \left(1 - \frac{\pi^2}{6\zeta(3)}\mu(x)\right)$

Appendix Evolution equation of µ-distortion

Bose temperature and Planck temperature

We expand local Bose temperature T_{BE} as follows:

$$T_{\mathsf{BE}}(x) = T_{\mathsf{pl}}(x) + t_{\mathsf{BE}}(x)$$
$$= \langle T_{\mathsf{pl}} \rangle + \delta T(x) + t_{\mathsf{BE}}(x)$$
$$= T_{\mathsf{rf}} + \Delta T + \delta T(x) + t_{\mathsf{BE}}(x)$$

Notice that $\langle T_{\rm pl} \rangle \neq T_{\rm rf} = (\beta^{-1} \langle n \rangle)^{1/3}$

- t_{BE} is difference between $T_{BE}(x)$ and $T_{pl}(x)$
- $\delta T(x)$ is inhomogeneous part of local Planck temperature
- \blacksquare ΔT is homogeneous temperature variation
- $T_{\rm rf}$ is 'reference temperature' which scales as a^{-1}

Expand n(x) and $\rho(x)$ around $T_{\rm rf}$

We define dimensionless perturbations as follows:

$$\blacksquare T_{\rm rf} + \delta T(x) + \Delta T + t_{\rm BE}(x) = T_{\rm rf}(1 + \Theta(x) + \Delta + t(x))$$

• ΔT and $t_{\mathsf{BE}}(x)$ are the 2nd order of $\Theta(x)$

Then we get,

$$n(x) = \beta T_{\rm rf}^3 \left(1 + 3\Theta(x) + 3\Delta + 3t(x) + 3\Theta^2(x) - \frac{\pi^2}{6\zeta(3)}\mu(x) \right)$$
$$\rho(x) = \alpha T_{\rm rf}^4 \left(1 + 4\Theta(x) + 4\Delta + 4t(x) + 6\Theta^2(x) - \frac{90\zeta(3)}{\pi^4}\mu(x) \right)$$

Impose number conservation law: $d(a^3\langle n\rangle)/d\eta = 0$

•
$$\Delta + \langle t \rangle = \frac{\pi^2}{18\zeta(3)} \langle \mu \rangle - \langle \Theta^2 \rangle$$

Substitute this into $\rho(x)$, we obtain

$$\langle \rho \rangle = \alpha T_{\rm rf}^4 \left[1 + 2 \langle \Theta^2 \rangle + \left(\frac{2\pi^2}{9\zeta(3)} - \frac{90\zeta(3)}{\pi^4} \right) \langle \mu \rangle \right]$$