ensoron:

spectator scalar field inducing gravitational waves during inflation

Still in progress

Tomohiro Fujita from Kavli IPMU/Tokyo Univ. with J. Yokoyama(RESCEU) & S. Yokoyama(ICRR)

Introduction & Motivation

INTRODUCTION

BICEP2 has reported

Tensor to scalar ratio: $r \equiv \mathcal{P} \downarrow h / \mathcal{P} \downarrow \zeta \approx 0.16$

If the observed B-mode polarizations are from inflation, it can be translated into Inflation Hubble prameter: HJinf $\approx 10 f 14 \text{ GeV} \sqrt{r}/0.1$

But, How robust is this relation?

ANOTHER POSSIBILITY

The production of GWs with $\mathcal{P}^{\downarrow h=8/M\downarrow Pl12} (H/2\pi)^{12}$ is the essential prediction of inflation.

Nevertheless, in principle, it is a lower bound. Are there any other GW productions?

If GWs produced by another mechanism are dominant, the estimate of *HJ*inf must be revised.

INDUCED GW

GWs can be induced by 2nd order pert.

Previous Works

PREVIOUS WORKS

Scalar pert. can induce GWs when it re-enters the horizon.

[Ananda+(2007), Baumann+(2007), Bartolo+(2007), Saito+(2010), Kawasaki+(2013)]

Dominant on large scale only for $r < 10 \hat{r} - 6$

DURING INFLATION

Scalar pert. also induce GW when it exits the horizon.

Large scale GWs (B-mode observable)

Mechanism: Scalar pert. σ_{p} provides 2nd order source for GWs;

EoM: $h\downarrow ij\uparrow'' + 2\mathcal{H}h\downarrow ij\uparrow' - \nabla\uparrow 2 h\downarrow ij = -4M\downarrow Pl\uparrow - 2 T\downarrow ij\uparrow lm S\downarrow lm$

Source: $S \downarrow lm = \int t m dt^3 p dt^3 q/(2\pi) t^3 \delta(p+q-k) c \downarrow s t^2 p \downarrow i q \downarrow j \sigma \downarrow p \sigma \downarrow q$

where $T \downarrow ij \uparrow lm$ is the T.T. projection tensor.

BIAGETTI'S PAPER

"Enhancing Inflationary Tensor Modes through Spectator Fields" Biagetti, Fasiello & Riotto. PRD**88**, 103518 (2013)

- Numerically calculate induced $\mathcal{P}\downarrow h$.
- Obtain analytic eq. by fitting the numerical result.
- 4p letter. No UV cutoff or constraints on *cls* are mentioned.

SMALL SOUND SPEED

To enhance scalar pert., small $c \downarrow s$ is introduced. [Biagetti+(2013)]

$$S_{\sigma} = \int \mathrm{d}^3 x d\eta \sqrt{-g} \left[\frac{1}{2a^2} (\sigma'^2 - c_s^2 \partial_i \sigma \partial_i \sigma) - V(\sigma) \right]$$

small *cls* has 2 effects.

Power Spec. $\mathcal{P}\downarrow\sigma = (H/2\pi) 12 \times c \downarrow s \uparrow -3$

 $\sigma \downarrow \boldsymbol{p} = 1/\sqrt{2} c \downarrow s p \ (1 - iaH/c \downarrow s p) e^{\uparrow} - ic \downarrow s p \eta$

To eliminate vacuum contribution, we approximate $\sigma \downarrow \mathbf{p} = H \downarrow \inf /\sqrt{2} (c \downarrow s p) \frac{13}{2} \theta (1 + c \downarrow s p \eta) [a \downarrow \mathbf{p} + a \downarrow - \mathbf{p} \uparrow]$

[Perhaps better treatment exists. Comments are welcome.]

Calculation

$\sigma \times \sigma$ induces h

 $h\downarrow ij\uparrow'' + 2\mathcal{H}h\downarrow ij\uparrow' - \nabla\uparrow 2 h\downarrow ij$

 $= -4M\downarrow Pl\uparrow -2 T \downarrow ij\uparrow lm \int \uparrow d\uparrow 3 p d\uparrow 3 q/(2\pi)\uparrow 3 \delta(\mathbf{p}+\mathbf{q}-\mathbf{k}) c\downarrow s\uparrow 2 p \downarrow i q\downarrow j \sigma \downarrow \mathbf{p} \sigma \downarrow \mathbf{q}$

Solve it and substitute it into power spec. eq.

$$\left\langle h_{\boldsymbol{k}}^{\pm}(\eta)h_{\boldsymbol{k'}}^{\pm}(\eta)\right\rangle = \frac{2\pi^2}{k^3}\delta(\boldsymbol{k}+\boldsymbol{k'})\mathcal{P}_{h}^{\pm}(\boldsymbol{k},\eta)$$

4-P FUNCTION

Solving the EoM with Green's function, we obtain

$$\frac{2\pi^2}{k^3}\delta(\mathbf{k}+\mathbf{k'})\mathcal{P}_h^{\pm}(k,\eta) = 16\frac{c_s^4}{M_{\rm Pl}^4}\int \frac{\mathrm{d}^3p\mathrm{d}^3q\mathrm{d}^3p'\mathrm{d}^3q'}{(2\pi)^6}\delta(\mathbf{p}+\mathbf{q}-\mathbf{k})\delta(\mathbf{p'}+\mathbf{q'}-\mathbf{k'})e_{ij}^{\pm}(\mathbf{k})e_{ml}^{\pm}(\mathbf{k'})p_iq_jp'_mq'_l \\ \times \int_{-\infty}^{\infty}\mathrm{d}\tau\mathrm{d}\tau'g_k(\eta,\tau)g_{k'}(\eta,\tau')\left\langle\sigma_{\mathbf{p}}(\tau)\sigma_{\mathbf{q}}(\tau)\sigma_{\mathbf{p'}}(\tau')\sigma_{\mathbf{q'}}(\tau')\right\rangle.$$

and it reads

$$\mathcal{P}_{h}^{\pm}(\eta,k) = \pm \frac{4}{\pi^{2}} c_{s}^{-2} \frac{H_{\text{inf}}^{4}}{M_{\text{Pl}}^{4}} k^{3} \int \mathrm{d}^{3}p \mathrm{d}^{3}p' \delta(\boldsymbol{p}-\boldsymbol{p'}-\boldsymbol{k}) e_{ij}^{\pm}(\boldsymbol{k}) e_{ml}^{\pm}(\boldsymbol{k}) \frac{p_{i} p_{j}' p_{m}' p_{l}}{(pp')^{3}} \\ \times \left[\int_{-\infty}^{\infty} \mathrm{d}\tau g_{k}(\eta,\tau) \theta(\gamma+c_{s}p\tau) \theta(\gamma+c_{s}p'\tau) \right]^{2}$$

 $g_k(\eta,\tau) = \frac{\theta(\eta-\tau)}{k^3\tau^2} \Re e \left[e^{ik(\eta-\tau)} (1-ik\eta)(-i+k\tau) \right]$

with

RESULT

 $M \downarrow P l \uparrow 4$

The main contribution comes from $c \downarrow s p \sim k$, namely same wave-number as the GW's.

The induced GW power spectrum is

If it is dominant, the tensor-to-scalar ratio is

3 *(H*↓inf /

Thus for $c \downarrow s \leq 10^{1} - 3$, $H \downarrow inf$ Can be lower than $10^{1} + 4$ GeV.

Constraints

cls cannot be arbitrarily small:1. Curvature Pert. (curvaton)

$$\begin{aligned} \mathcal{P}_{\zeta}^{(\sigma)} \simeq \frac{c_s^{-3} \sigma_*^2 H_{\inf}^2}{576 \pi^2 M_{\text{Pl}}^4} \frac{\Gamma_{\phi}}{\Gamma_{\sigma}} \ll \mathcal{P}_{\zeta}^{obs} \approx 2.2 \times 10^{-9} \\ \Longrightarrow c_s > 0.01 \left(\frac{\sigma_*}{0.1 M_{\text{Pl}}}\right)^{\frac{2}{3}} \left(\frac{H_{\inf}}{10^{14} \text{GeV}}\right)^{\frac{2}{3}} \left(\frac{\Gamma_{\phi}}{\Gamma_{\sigma}}\right)^{\frac{1}{3}}. \end{aligned}$$

2. Non-gaussianity

$$\begin{split} f_{\rm NL} &\simeq \frac{5}{3\hat{r}} \left(\frac{\mathcal{P}_{\zeta}^{(\sigma)}}{\mathcal{P}_{\zeta}^{obs}} \right)^2 \simeq \frac{5c_s^{-6}(\mathcal{P}_{\zeta}^{obs})^{-2}}{165888\pi^4} \frac{\sigma_*^2 H_{\rm inf}^4}{M_{\rm Pl}^6} \left(\frac{\Gamma_{\phi}}{\Gamma_{\sigma}} \right)^{\frac{3}{2}} < 14.3, \\ \implies c_s = 0.024 \left(\frac{f_{\rm NL}}{10} \right)^{-\frac{1}{6}} \left(\frac{\sigma_*}{0.1M_{\rm Pl}} \right)^{\frac{1}{3}} \left(\frac{H_{\rm inf}}{10^{14} {\rm GeV}} \right)^{\frac{2}{3}} \left(\frac{\Gamma_{\phi}}{\Gamma_{\sigma}} \right)^{\frac{1}{4}}. \end{split}$$

• They require small σ_{I*}

3. Validity of Perturbation

Since we derive the lower bound on cls, we can find the maximum Plh, or

 $R \equiv \mathcal{P} \downarrow h \uparrow \sigma / \mathcal{P} \downarrow h \uparrow \inf$

Constraint on *R*

$R \lesssim 4 \times 10^{\uparrow} - 5 \ M \downarrow P l^{\uparrow} 2 \ / \sigma \downarrow * \uparrow 2 \ \Gamma \downarrow \sigma \ / \Gamma \downarrow \phi$

1. $\mathcal{P}\downarrow\zeta\uparrow(\sigma)$:

$R \simeq 1 \times 10^{\uparrow} - 5 f \downarrow NL^{\uparrow} - 1 M \downarrow Pl / \sigma \downarrow * (\Gamma \downarrow \sigma / \Gamma \downarrow \phi)^{\uparrow} 3/4$

2. f_{INL} :

R≲2.6*σ↓**12 /*M↓Pl*12

3. $\delta\sigma/\sigma I$ *:

We can maximize Tensoron's GWs by

 $\sigma \downarrow * \sim M \downarrow Pl$,

 $\Gamma l\sigma > 10\,16\,\Gamma l\phi$

However, it cannot be dominant

R≲3

Thus *plinf* doesn't significantly change.

Discussions

K-ESSENCE

[Armendariz-Picon+(1999), Appignani+(2012)]

K-essence model:

$$\mathcal{L} = P(X, \phi) , \quad 2 X = \nabla^{\alpha} \phi \nabla_{\alpha} \phi$$

 $T_{\mu\nu} = P_X \nabla_\mu \phi \nabla_\nu \phi - g_{\mu\nu} P$

$$c_{\delta\phi}^2 = \frac{P_x^{(0)}}{P_x^{(0)} + P_{_{XX}}^{(0)} \dot{\phi}_0^2}$$

Modified EoM of $\delta \phi$:

Not clst2 !!

$$\left(P_{X}^{(0)} + P_{XX}^{(0)} \dot{\phi}_{0}^{2} \right) \delta \ddot{\phi} - \frac{P_{X}^{(0)}}{a^{2}} \delta \phi_{,ii} + C \, \delta \dot{\phi} + D \, \delta \phi = 0$$

Perturbed EMT:

$$\delta^{(2)}T_{ij} = P_x^{(0)} \left(1 - \frac{\delta_{ij}}{2}\right) \delta\phi_{,i} \,\delta\phi_{,j} \quad + (\text{Non-T.T. terms})$$

New parameter naturally appears. Constraint may be relaxed.

LARGE $\delta\sigma$

Is δσ<< σ1* mandatory??

No! But $\delta \sigma \gg \sigma I *$ looks a bit unnatural.

 $\delta \sigma lp$ produced at N > 50 should be absorbed in $\sigma l*$. If $\mathcal{P} l\sigma$ is scale invariant, at least $\delta \sigma lp \sim \sigma l*$.

However, if $c \downarrow s \neq 0$ $\mathcal{P} \downarrow \sigma$ is not scale invariant. $\Rightarrow \delta \sigma \gg \sigma \downarrow *$ realized

The constraint from *finit* should be reconsidered.

Summary

- We study Tensoron *σ* with small *cls* and obtain analytic solution.
- For σ↓* ~M↓Pl, Γ↓σ>1016 Γ↓φ, induced GWs are comparable to intrinsic GWs but cannot be far bigger within δσ<σ↓*.
- If a more generalized theory is considered, Induced GWs may be dominant.

Backup slides

INTERACTION TERM

Original Action:

 $1/2 \sqrt{-g} g f \mu \nu \partial \downarrow \mu \phi \partial \downarrow \nu \phi$

Perturb it w.r.t. graviton hluv

 $g\downarrow\mu\nu = a\uparrow 2 (\eta\downarrow\mu\nu + h\downarrow\mu\nu), \qquad g\uparrow\mu\nu = a\uparrow -2 (\eta\uparrow\mu\nu - h\uparrow\mu\nu + O(h\uparrow 2))$

Substituting them, we rewrite the action as

 $1/2 a \hat{1} 2 [\eta \hat{1} \mu \nu + h \hat{1} \mu \nu + O(h \hat{1} 2)] \partial \downarrow \mu \phi \partial \downarrow \nu \phi$

QUICK REVIEW

Let us briefly review the derivation of inflationary GWs.

- Introduce the metric pert. $ds \uparrow 2 = a \uparrow 2 (\eta) [d\eta \uparrow 2 (\delta \downarrow i j + h \downarrow i j) dx \uparrow i dx \uparrow j]$
- Adopt the T.T. gauge $h\downarrow ii = 0$ (Traceless), $\partial \downarrow i h\downarrow ij = 0$ (Transverse)

At 2nd order pert., Einstein-Hilbert action is reduced to $S\downarrow h = M \downarrow P 1 \uparrow 2 / 8 \int f = d\eta d \uparrow 3 x a \uparrow 2 (\eta) [h \downarrow i j \uparrow \uparrow 2 - (\partial \downarrow l h \downarrow i j) \uparrow 2].$

hlij is decomposed into mode func. and C/A operator in Fourier space,

where $e^{ij}\lambda(\mathbf{k})$ is the polarization basis tensor. Thus the power spectrum of each GW polarization is $\times M^{i}Pl/2$ of the scalar PS, $\mathcal{P}^{i}\phi = (H/2\pi)^{2}$:

 $\mathcal{P}\downarrow h = 8/M\downarrow Pl^2 (H/2\pi)^2 \& \mathcal{P}\downarrow\zeta$ to be $\approx 2.2 \times 10^{4/4}$ Ligf $\approx 10^{14} \text{ GeV}\sqrt{r/0.1}$