

A New Method To Determine Large Scale Structure From The Luminosity Distance

Hsu-Wen Chiang in collaboration with

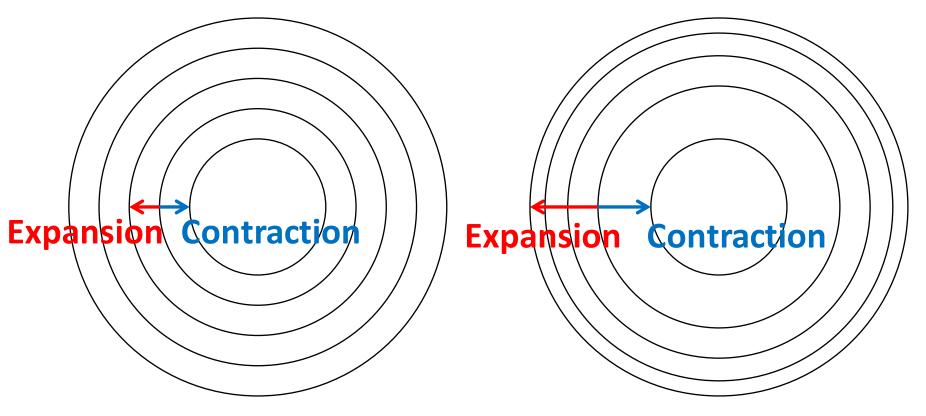
Antonio Enea Romano and Pisin Chen

Leung Center for Cosmology and Particle Astrophysics (LeCosPA) National Taiwan University

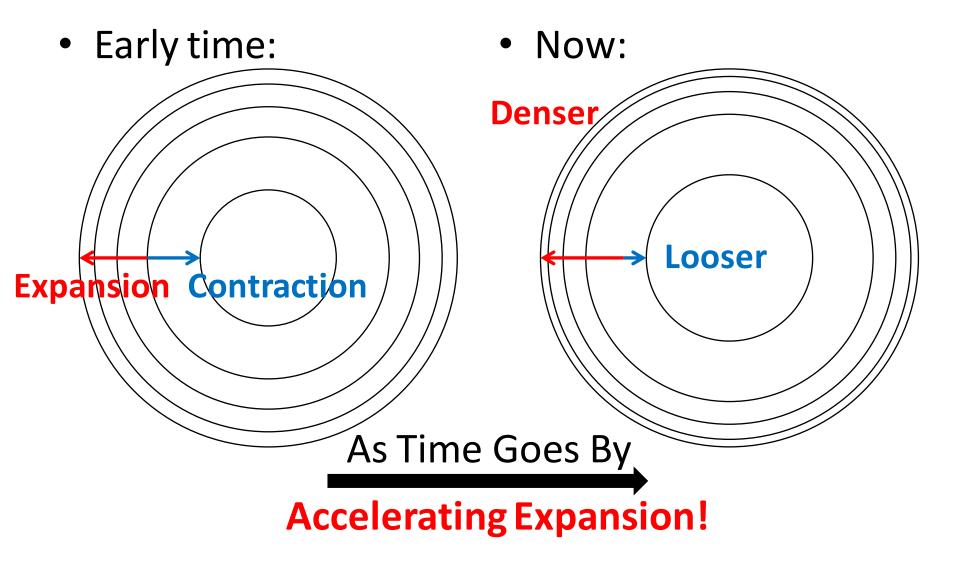
Class. Quan. Grav. Vol.31 115008, arXiv:1312.4458

Accelerating Expansion from Large Scale Inhomogeneity

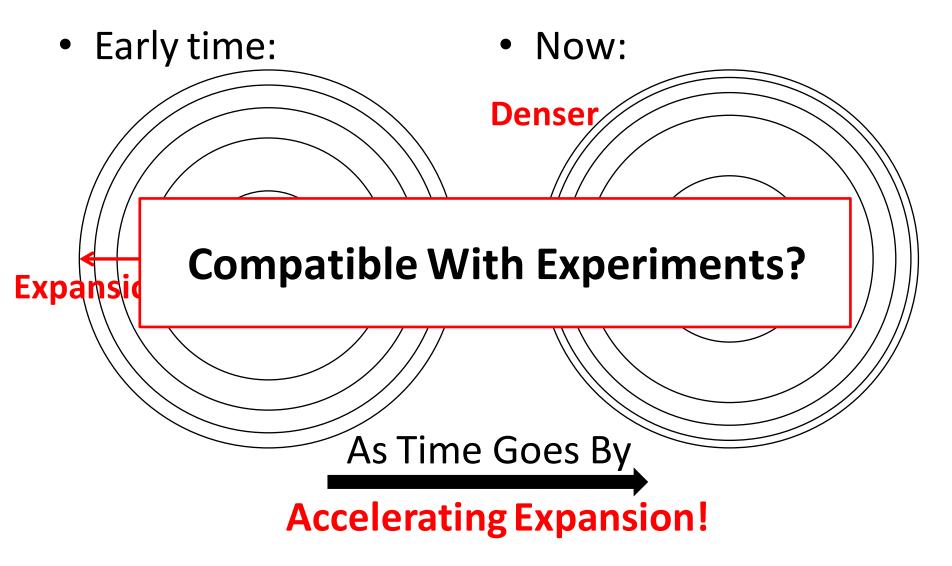
A homogeneous
An inhomogeneous
universe (FRW model)
universe (Void model)



Accelerating Expansion from Large Scale Inhomogeneity



Accelerating Expansion from Large Scale Inhomogeneity



Outline

- Accelerating Expansion from Large Scale Inhomogeneity: LTB Model
- Mimicking ACDM Model: Central Spatial Curvature as "Free Parameter"
- Climbing over Apparent Horizon: An Unique Solution

(R = Areal Radius) Modeling Large Scale Inhomogeneity

- Assuming spherical symmetry (LTB metric):
 - $ds^{2} = -dt^{2} + a(t,r)^{2} \left[\left(1 + \frac{r\partial_{r}a(t,r)}{a(t,r)} \right)^{2} \frac{dr^{2}}{1 k(r)r^{2}} + r^{2}d\Omega^{2} \right],$ $\rho = \frac{2\partial_{r}M}{a^{2}r^{2}(r\partial_{r}a + a)}, \quad H^{2} = \left(\frac{\partial_{t}a}{a} \right)^{2} = \frac{-k(r)}{a^{2}} + \frac{2M(r)}{a^{3}r^{3}}$
- Fix gauge freedom of r by setting $M(r) = \frac{1}{6}\rho_0 r^3$ Conformal time $\eta = \int_{\alpha(\tau,r)}^{t} \frac{d\tau}{\alpha(\tau,r)} + t_b(r)$

$$a(\eta, r) = \frac{\rho_0}{6k(r)} \left[1 - \cos\left(\sqrt{k(r)}\eta\right) \right] \text{From now on we set } \mathbf{t}_b = \mathbf{0}$$
$$t(\eta, r) = \frac{\rho_0}{6k(r)} \left[\eta - \sqrt{k(r)}^{-1} \sin\left(\sqrt{k(r)}\eta\right) \right] + t_b(r)$$

(R = Areal Radius)

Fixing Initial Condition

Assuming a central observer, we have

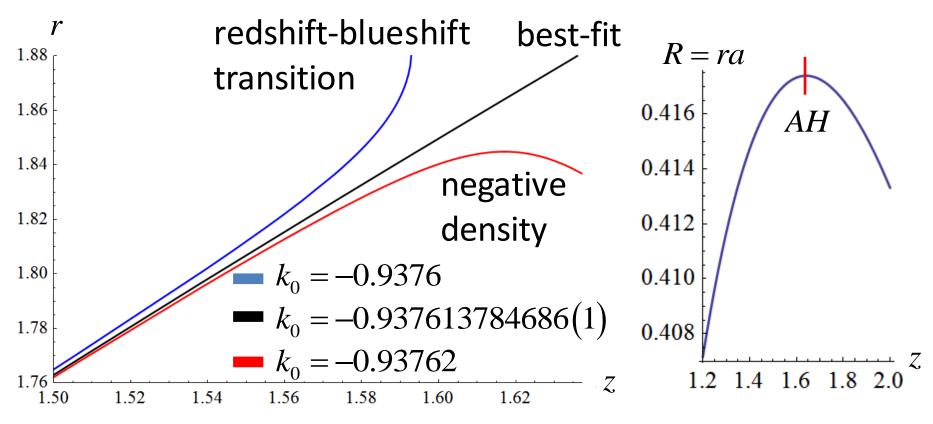
 $r(z=0)=0, a(z=0)=a_0, \eta(z=0)=\eta_0, k(z=0)=k_0$ and $H^{LTB}(z=0)=H_0$, where $H^{LTB}=\frac{\partial \ln a(t,r)}{\partial t}$.

- Since $a(\eta = \eta_0, r = 0) = a_0$ and $H^{LTB}(\eta = \eta_0, r = 0) = H_0$ are given, η_0 , k_0 and ρ_0 can be determined up to k_0 .
- Central spatial curvature as "free parameter"
- Luminosity distance on past null geodesic $D_L^{obs}(z) = (1+z)^2 a(t(z), r(z))r = D_L^{FRW}(z)$ is the input.

(R = Areal Radius)

Numerical Results

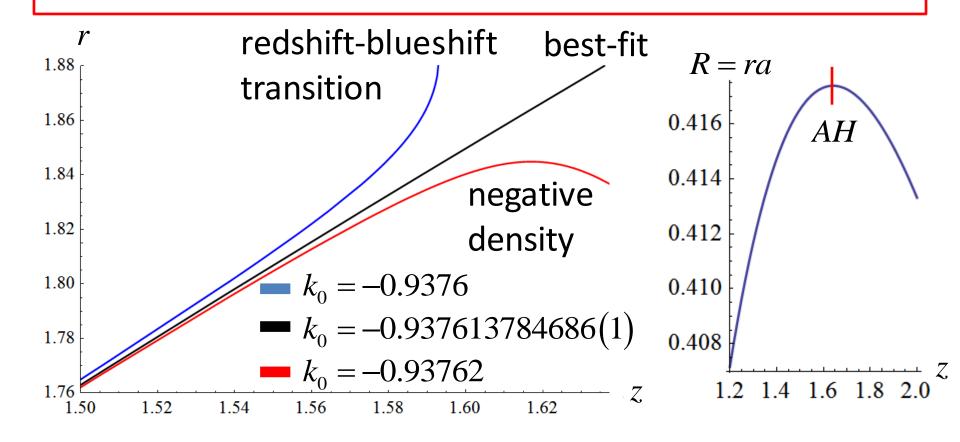
- Not so stable around apparent horizon at $z \sim 1.6$
- Overcome AH through extrapolation?!



(R = Areal Radius)

Numerical Results

Only One Valid k₀, Why?

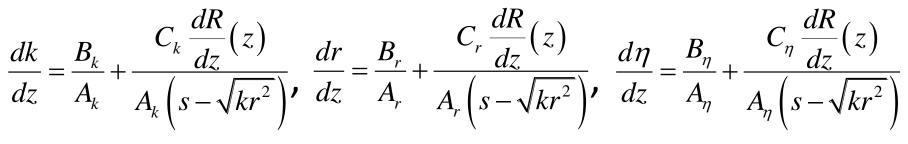


Expansion Around Apparent Horizon

• Staring at the geodesic equations, we found a common denominator $r\sqrt{k(1-s^2)}-s\sqrt{1-kr^2}$, where $s = \sqrt{H_0ka(1+k_0)^{-1}}$.

Unstable when $R \approx (1+k_0)r^3/H_0$ or $s \approx \sqrt{kr^2}$

• Expand the numerator around $R = (1+k_0)r^3/H_0$

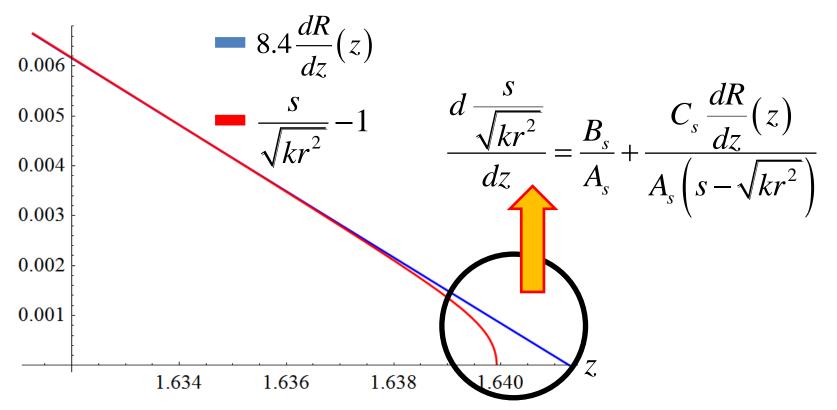


• Needs $s = \sqrt{kr^2}$ and $\frac{dR}{dz}(z) = 0$ at same spot

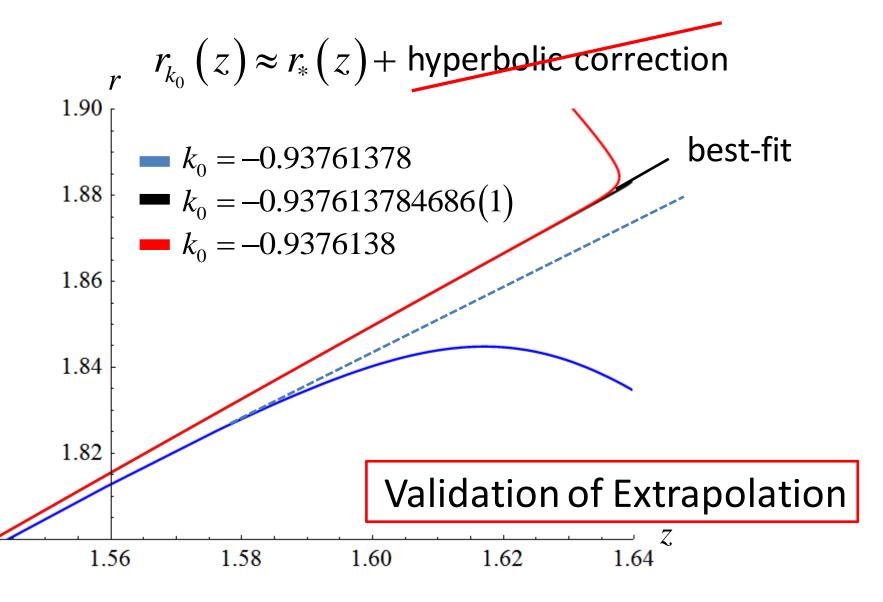
Expansion Around Apparent Horizon

• Needs $s = \sqrt{kr^2}$ and $\frac{dR}{dz}(z) = 0$ at same spot

• Also
$$\sqrt[s]{\sqrt{kr^2}} - 1 \propto (z - z_{AH})$$



Expansion Around Apparent Horizon



Uniqueness of k₀

- Sudden jump happens only at $R_{AH} \approx (1+k_0) r_{z_{AH}}^3 / H_0$
- The existence of solution extended beyond AH is indicated by transit of cause of stop of integrator between $\frac{dr}{dz} = 0$ and $\frac{dz}{dr} = 0$.
- We scanned over parameter space $k_0 \in (-1,\infty)$ and found 1 solution.
- Not a rigorous proof yet

Conclusion

- There exists 1 to N correspondence between ΛCDM metric with certain parameter, and LTB metrics with specific setups that mimic the luminosity distance of that ΛCDM metric.
- But only 1 LTB metric can go beyond apparent horizon without hazards like negative density.

ACDM Metric
$$\{\Omega_m, \Omega_\Lambda\}$$
1 to N
 D_L LTB Metrics $\{k_{k_0}(r), a_{k_0}(t, r)\}$ M_L D_L M_L M_L M_L M_L $\{k_*(r), a_*(t, r)\}$ $k_0 \in (-1, \infty)$ 1 to 1 M_L M_L

Conclusion

- The error of extrapolation used to overcome apparent horizon is marginal as long as k_0 used in simulation is close to the best fit k_0 value.
- Best extrapolation method is 1st order Taylor expansion.

The End

