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Accelerating Expansion from Large 
Scale Inhomogeneity 

• A homogeneous 
universe (FRW model) 

• An inhomogeneous 
universe (Void model) 
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Compatible With Experiments? 



Outline 

• Accelerating Expansion from Large Scale 
Inhomogeneity: LTB Model 
 

• Mimicking ΛCDM Model: Central Spatial 
Curvature as “Free Parameter” 
 

• Climbing over Apparent Horizon: An Unique 
Solution 



Modeling Large Scale Inhomogeneity 

• Assuming spherical symmetry (LTB metric): 

 

 

 

• Fix gauge freedom of r by setting 

• Conformal time 
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From now on we set tb=0 
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(R = Areal Radius) 



Fixing Initial Condition 

• Assuming a central observer, we have 
 
and                         ,where                          . 

• Since                             and 
are given,    ,     and     can be determined up 
to    . 

• Central spatial curvature as “free parameter” 

• Luminosity distance on past null geodesic 
                                                            is the input. 

       0 0 00 0, 0 , 0 , 0r z a z a z k z k        

 ln ,
LTB

a t r
H

t





 0 0, 0a r a     0 0, 0LTBH r H   

0 0k 0

0k

          
2

1 ,obs FRW

L LD z z a t z r z r D z  

  00LTBH z H 

(R = Areal Radius) 



• Not so stable around apparent horizon at 

• Overcome AH through extrapolation?! 

Numerical Results 
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Only One Valid k0, Why? 



Expansion Around Apparent Horizon 

• Staring at the geodesic equations, we found a 
common denominator 
, where                           . 

 

• Expand the numerator around  
 
                        ,                              , 
 

• Needs              and               at same spot  
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Expansion Around Apparent Horizon 

• Needs              and               at same spot  

• Also 
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Expansion Around Apparent Horizon 
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Validation of Extrapolation 
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• Sudden jump happens only at 

• The existence of solution extended beyond AH 
is indicated by transit of cause of stop of 
integrator between           and          . 

• We scanned over parameter space                  
and found 1 solution. 

• Not a rigorous proof yet 

Uniqueness of k0 
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Conclusion 

• There exists 1 to N correspondence between 
ΛCDM metric with certain parameter, and LTB 
metrics with specific setups that mimic the 
luminosity distance of that ΛCDM metric. 

• But only 1 LTB metric can go beyond apparent 
horizon without hazards like negative density. 
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Conclusion 

• The error of extrapolation used to overcome 
apparent horizon is marginal as long as k0 
used in simulation is close to the best fit k0 
value. 

• Best extrapolation method is 1st order Taylor 
expansion. 



The End 


