## BLACK HOLES IN MACROPHYSICS AND MICROPHYSICS

GER BRIEFS IN PHYSICS

**Ouantum Black** 

D Spein

Holes

Bernard Carr Queen Mary, University of London

- Introducing black holes
- Formation of primordial black holes
- Constraints on primordial black holes
- Some hot topics

Lectures at RESCEU summer school 2014



### **BLACK HOLE FORMATION**

 $R_{\rm S} = 2GM/c^2 = 3(M/M_{\rm O}) \text{ km} \implies \rho_{\rm S} = 10^{18}(M/M_{\rm O})^{-2} \text{ g/cm}^3$ 

Stellar BH (M~10<sup>1-2</sup> $M_0$ ), IMBH (M~10<sup>3-5</sup> $M_0$ ), SMBH (M~10<sup>6-9</sup> $M_0$ ) may form at present or recent epochs.

### Small "primordial" BHs can only form in early Universe

cf. cosmological density  $\rho \sim 1/(Gt^2) \sim 10^6 (t/s)^{-2} g/cm^3$ 

### ⇒ PBHs have horizon mass at formation

 $M_{PBH} \sim c^{3}t/G = \begin{cases} 10^{-5}g \text{ at } 10^{-43}s & (minimum) \\ 10^{15}g \text{ at } 10^{-23}s & (evaporating now) \\ 1M_{O} \text{ at } 10^{-5}s & (QCD \text{ transition}) \\ 10^{5}M_{O} \text{ at } 1s & (maximum) \end{cases}$ 

## OVERWHELMING EVIDENCE FOR STELLAR BH (M~101-2MO)



## OVERWHELMING EVIDENCE FOR SMBH IN AGN (M~10<sup>6-9</sup>M<sub>0</sub>)



## POSSIBLE EVIDENCE FOR IMBH (M~10<sup>3-5</sup>M<sub>0</sub>)

ULX source NGC1313 may have  $500M_{\odot}BH$ 



QPO in NGC5408 X1 implies 2000M<sub>o</sub> BH





Spiral ESO 243-49

GC Omega Cen may have  $4x10^4M_{\odot}BH$ 



Gamma-ray bursts?

## NO EVIDENCE FOR PRIMORDIAL BLACK HOLES!



## NO EVIDENCE FOR ACCELERATOR BLACK HOLES!

#### **BLACK HOLE EVAPORATION**

#### Black holes radiate thermally with temperature

$$\mathbf{T} = \frac{hc^3}{8\pi G k M} \sim \mathbf{10}^{-7} \left[ \frac{M}{M_0} \right]^{-1} \mathbf{K}$$
 (Hawking 1974)

=> evaporate completely in time  $t_{evap} \sim 10^{64}$ 

$$\mathbf{4} \left[ \frac{M}{M_0} \right]^3 \mathbf{y}$$

 $M \sim 10^{15}g \Longrightarrow$  final explosion phase today (10<sup>30</sup> ergs)

This can only be important for PBHs

γ-ray bgd at 100 MeV =>  $\Omega_{\text{PBH}}(10^{15}\text{g}) < 10^{-8}$ (Page & Hawking 1976)

=> explosions undetectable in standard particle physics model



PBHs important even if never formed!

Feynman's envelope!



#### 1975

### MODES OF BLACK HOLE FORMATION

| Name | Mass/M <sub>o</sub> | BH formation mechanism/stellar end-state                                                    | Location                                          |
|------|---------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
| SMO  |                     | Collapse to SMBH before H-burning from GR<br>instability. Accretion onto/merger of IMBHs    | Quasars/galactic nuclei<br>Intergalactic/halo DM? |
| νмо  | 105                 | Collapse to IMBH due to electron-positron<br>instability during O-burning                   | GCs/ULXs/GRBs?<br>Intergalactic/halo DM?          |
|      | 200                 | Explode due to electron-positron instability<br>during O-burning (no remnant)               |                                                   |
| мо   | 100                 | Prompt core collapse after nuclear burning or<br>delayed collapse after failed supernova    | Galactic discs                                    |
|      | 25                  | White dwarf or neutron star remnant or total<br>disruption at carbon ignition (no remnant)  |                                                   |
| PBH  | 1                   | Collapse from primordial fluctuations or at<br>cosmological phase transition or in dust era | Intergalactic/halo DM?                            |
|      | 10 <sup>-5</sup> g  | Same formation mechanism but evaporation<br>completed and M+ holes exploding today          | Local GRBs?                                       |
|      |                     | Planck mass relics of larger evaporated holes<br>or remnants of Planck epoch                | Intergalactic/halo DM?                            |

## WHEN BLACK HOLES FORM



## **QUANTUM & ASTROPHYSICAL EFFECTS OF BLACK HOLES**



### PART II: PRIMORDIAL BLACK HOLES

PBHs as probe of early Universe inhomogeneities, phase transitions, inflation

PBHs as probe of high energy physics PBH explosions, cosmic rays, extra dimensions

PBHs as probe of quantum gravity Planck mass relics, Generalized Uncertainty Principle

### WHAT PRIMORDIAL BLACK HOLES DO

### Probe fundamental physics (M~10<sup>-5</sup>g)

Planck-mass relics Extra dimensions and higher dimensional BHs TeV quantum gravity

#### **Probe early universe (M<10<sup>15</sup>g)**

Baryosynthesis/nucleosynthesis Gravitino/neutrino/entropy production Removing monopoles/domain walls

## Probe high energy physics (M~10<sup>15</sup>g)

Cosmological and Galactic γ-rays Cosmic ray antiprotons and positrons PBH explosions and gamma-ray bursts

#### Probe gravity (M>10<sup>15</sup>g)

Non-baryonic cold dark matter candidate Dynamical/lensing/gravitational-wave effects Seed large-scale structure and SMBHs in galactic nuclei

### **HOW PBHS FORM**

Inhomogeneities (discussed in more detail later)

Pressure reduction Khlopov & Polnarev 1980, Widerin & Schmid 1998, Jedamzik & Niemeyer 1999, Fuller et al 2000

Cosmic strings Polnarev & Zemboricz 1988, Hawking 1989, Garriga & Sakellariadou 1993, Caldwell & Casper 1996, MacGibbon et al 1998

Bubble collisions Crawford & Schramm 1982, Hawking et al 1982, La & Steinhardt 1989 Konoplich et al 1998, Khlopov et al 1999 Domain walls Rubin et al 2000, Khlopov et al 2004

String necklaces Matsuda 2006, Lake et al 2009

## Limit on fraction of Universe collapsing

 $\beta(M)$  fraction of density in PBHs of mass M at formation

### **General limit**

$$\frac{\rho_{PBH}}{\rho_{CBR}} \approx \frac{\Omega_{PBH}}{10^{-4}} \left[ \frac{R}{R_0} \right] \Longrightarrow \beta < 10^{-6} \,\Omega_{PBH} \left[ \frac{t}{\text{sec}} \right]^{1/2} 10^{-18} \,\Omega_{PBH} \left[ \frac{M}{10^{15} g} \right]^{1/2}$$

 $\begin{array}{ll} \mbox{Unevaporated} & M {>} 10^{15} \mbox{g} \Longrightarrow \Omega_{PBH} {<} 0.25 & (CDM) \\ \mbox{Evaporating now} & M {\sim} 10^{15} \mbox{g} \Longrightarrow \Omega_{PBH} {<} 10^{-8} & (GRB) \\ \mbox{Evaporated in past} & M {<} 10^{15} \mbox{g} \end{array}$ 

=> constraints from entropy, γ-background, BBNS

Carr, Gilbert & Lidsey (1994)



Constraints on amplitude of density fluctuations at horizon epoch



#### **PBH FORMATION => LARGE INHOMOGENEITIES**

 $R > \sqrt{\alpha}$  ct when  $\delta \sim 1 \implies \delta_{\rm H} > \alpha$  (p= $\alpha \rho c^2$ )

Gaussian fluctuations with  $<\delta_{\rm H}^2>^{1/2} = \epsilon({\rm M})$ 

Separate universe for  $\delta_{\rm H} > 1$  but recently disputed

Analytic prediction ( $\delta > 0.3$  for  $\alpha = 1/3$ ) confirmed by early numerical studies but pressure gradient means PBHs are somewhat smaller than horizon (Nadezhin et al 1978)

#### **CRITICAL PHENOMENA**

Mass scaling =>  $M_{PBH} = k M_{H} (\delta - \delta_{C})^{\gamma}$  (Choptuik 1993)

In Friedmann background (Niemeyer & Jedamzik 1998)

**2.4** < k < **11.9**, **0.67** <  $\delta_{\rm C}$  < 0.71, 0.34 <  $\gamma$  < 0.37

⇒ PBH mass spectrum peaks at horizon mass but has extended low mass tail  $dN/dM \propto M^{1/\gamma-1} \exp[-(M/M_f)^{1/\gamma}]$ (Yokoyama 1998, Kribs 1999, Green 2000)

Later studies =>  $0.43 < \delta_C < 0.47$  (Musco et al 2005) Peak analysis versus Press-Schechter =>  $\delta > 0.3$  again! (Green et al 2004)

# **Constraints on PBHs from near-critical collapse**

(Yokoyama 1998)



JCAP 01 (2014) 037

#### Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation

Tomohiro Nakama,<sup>*a,b*</sup> Tomohiro Harada,<sup>*c*</sup> A.G. Polnarev<sup>*d*</sup> and Jun'ichi Yokoyamab,

Numerically solve evolution of spherically symmetric highly perturbed configuration using curvature profiles characterized by 5 parameters. Only two are important: average amplitude of central overdensity (I) and width of transition region at boundary ( $\Delta$ ).



#### **NON-GAUSSIAN FLUCTUATIONS**

Expected whenever fluctuations are large (Bullock & Primack 1997, Ivanov 1998, Hidalgo 2007, Young & Byres 2013)

Quantum field theory => n-point correlation function Slow-roll correction using inflation 3-point correlator

 $\delta_{H}$  associated with the plateau model (71) as a function of the logarithm of the length scale L in units of pc. The plateau regios seen in Fig. 3 produces the rapid rise in power, corresponding to



(Seery & Hidalgo 2006)



wn in Fig. 4 and the distribution of flor





FIG. 6. A con

2-parameter curvature profile (Polanev & Musco 2007, Polnarev et al 2012))



5-parameter curvature profile (Nakama et al. 2014)





#### **PBHS AND INFLATION**

**PBHs formed before reheat inflated away =>** 

 $M > M_{min} = M_{Pl}(T_{reheat} / T_{Pl})^{-2} > 1 \text{ gm}$ 

since CMB quadrupole =>  $T_{reheat} < 10^{16} GeV$ 

But inflation generates fluctuations  $\frac{\delta \rho}{\rho}$ 

$$\sim \left[ \frac{V^{3/2}}{M_{\text{Pl}}{}^3V'} \right]_{\!H}$$

**Can these produce PBHs?** 

Slow roll plus friction-domination

$$\xi = (M_{Pl}V'/V)^2 << 1, \qquad \eta = M_{Pl}V''/V << 1$$

=> nearly scale-invariant fluctuations

$$|\delta_{\mathbf{k}}^2| \sim \mathbf{k}^{\mathbf{n}}, \ \delta_{\mathbf{H}} \sim \mathbf{M}^{(1-\mathbf{n})/4} \text{ with } n = 1 - 3\xi + 2\eta \approx 1$$

Can we believe 
$$\frac{\delta \rho}{\rho} \sim \left[ \frac{V^{3/2}}{M_{\rm Pl}^{3} V'} \right]_{H}$$
 at end of inflation?

New sources of curvature fluct'ns at end of inflation (Kolb et al 2005, Lyth 2005, Salem 2005)

PBH formation on sub-horizon scales (Lyth et al 2005)

Feature in  $V(\phi) \Rightarrow$  discrete PBH mass spectrum on any scale (Hodges & Blumenthal 1990, Ivanov et al 1994)

#### PBHs and preheating

(Easther & Parry 2000, Bassett &Tsujikawa 2001, Green & Malik 2001, Finelli & Khlebnikov 2001,<sup>2</sup> Suyama et al 2005, Torres-Lomas et al. 2013) 4

Second inflationary phase can produce PBHs in any mass range (Yokohama, Frampton et al. 2010)



**CMB** =>  $\delta_{\rm H} \sim 10^{-5}$  => n > 1 for PBHs =>  $V'V/V^2 > 3/2$ . PBH limits then constrain n for each reheat time  $t_{\rm R}$ 



**Observe n < 1 on horizon scale => need running index for PBHs. BICEP2 gives**  $\frac{d \ln n}{dk} \approx -0.02 \pm 0.01$  (wrong sign!) **Can reasonable inflation model allow n > 1 at large k**?

#### **PBH CONSTRAINTS ON INFLATION MODELS**

Designer (Hodge et al 1990, Ivanov et al 1994, Yokoyama 1999, Blais et al 2003)

Chaotic (Carr et al 1994, Green & Liddle 1997, Kim et al 2000, Bringmann et al 2001, Lyth et al 2006, Zaballa et al 2007)

Supernatural (Randall, Soljacic & Guth 1996)

Supersymmetry/supergravity (Green et al 1997, Green 1999, Kanazawa et al. 2000)

Hybrid (Garcia-Bellido, Linde & Wands 1996, Kanazawa et al. 2000)

Multiple/oscillating (Yokoyama 1998, Taruya 1999, Saito et al 2008)

Running (Leach, Grivell & Liddle 2000, Kawasaki et al 2007, Kawaguchi et al 2008, Bugaev & Klimai 2009, Kohri et al 2009)

Locked/saddle (Easther, Khoury & Schalms 2004)

Hill top (Kohri, Lin & Lyth 2007, Alabidi & Kohri 2009)

Preheating (Easther & Parry 2000, Green & Malik 2001, Bassett & Tsukikawa 2001, Finelli & Khlebnikov 2001, Suyama et al 2005)