Numerical approach to the inflationary Langevin equations

Vincent VENNIN

July 28, 2011

• Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)

- Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)
- Is a high energy acceleration of cosmic expansion $(\ddot{a} > 0)$

- Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)
- Is a high energy acceleration of cosmic expansion $(\ddot{a} > 0)$
- Can be implemented with a single scalar field

- Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)
- Is a high energy acceleration of cosmic expansion $(\ddot{a} > 0)$
- Can be implemented with a single scalar field

- Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)
- Is a high energy acceleration of cosmic expansion $(\ddot{a} > 0)$
- Can be implemented with a single scalar field

A single scalar field model

$$S = -\int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right]$$

$$\Rightarrow \begin{cases} \rho = \frac{1}{2} \left(\dot{\phi} \right)^2 + V(\phi) \\ p = \frac{1}{2} \left(\dot{\phi} \right)^2 - V(\phi) \end{cases}$$

Friedmann equation: $\ddot{a}/a = -\frac{1}{6M_{Pl}^2} \left(\rho + 3p \right) \Longrightarrow$ Inflationary regime: $V(\phi) \gg \left(\dot{\phi} \right)^2$

Slow-Roll Regime

Klein-Gordon equation in this regime: $\dot{\phi} = -\frac{V'(\phi)}{3H}$, with $H^2 = (\dot{a}/a)^2$ = $V(\phi) / (3M_{\rm Pl}^2)$ So $V(\phi) \gg (\dot{\phi})^2 \implies M_{\rm Pl}V'(\phi) / V(\phi) \ll 1$ (flat potential condition)

V.Vennin(I.A.P.)

- Solves Hot Big Bang model problems (Horizon Problem and Flatness Problem)
- Is a high energy acceleration of cosmic expansion $(\ddot{a} > 0)$
- Can be implemented with a single scalar field
- Is compatible with observations

Predicts an almost scale invariant power spectrum

$$\hat{\phi}(\mathbf{x},t) = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^{\frac{3}{2}}} \left[e^{-i\mathbf{k}\cdot\mathbf{x}} \phi_{\mathbf{k}}(t) \hat{a}_{\mathbf{k}} + e^{i\mathbf{k}\cdot\mathbf{x}} \phi_{\mathbf{k}}^*(t) \hat{a}_{\mathbf{k}}^\dagger \right]$$

$$\hat{\phi}(\mathbf{x},t) = \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{\frac{3}{2}}} \left[e^{-i\mathbf{k}\cdot\mathbf{x}}\phi_{\mathbf{k}}(t)\hat{a}_{\mathbf{k}} + e^{i\mathbf{k}\cdot\mathbf{x}}\phi_{\mathbf{k}}^{*}(t)\hat{a}_{\mathbf{k}}^{\dagger} \right]$$
$$\hat{\phi}(\mathbf{x},t) = \underbrace{\int_{k < aH} \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{\frac{3}{2}}} \left[\right]}_{\text{super-Hubble modes}} + \underbrace{\int_{k > aH} \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{\frac{3}{2}}} \left[\right]}_{\text{sub-Hubble modes}}$$

Langevin Equation for the classical field

$$\dot{\phi} = -\frac{V'(\phi)}{3H} + \frac{H^{3/2}}{2\pi} \xi$$
, where ξ is a $\mathcal{N}(0,1)$ white gaussian noise.

• Can be solved perturbatively

Example: Small Field Inflation

Example: Small Field Inflation

Comparison with a Pertubative Development

V.Vennin(I.A.P.)

Conclusion

Main results: numerical solutions of inflationary Langevin equations

- Good agreement with the perturbative treatment in the dedicated regimes
- Limits of such a treatment:
 - Regimes where it is not valid
 - Multiple fields models
- Necessity to have a numerical code
- Significant changes in predicted relevant physical quantities

Conclusion

Main results: numerical solutions of inflationary Langevin equations

- Good agreement with the perturbative treatment in the dedicated regimes
- Limits of such a treatment:
 - Regimes where it is not valid
 - Multiple fields models
- Necessity to have a numerical code
- Significant changes in predicted relevant physical quantities

Prospects

- Impacts on the spectrum
- Non Gaussianities
- Towards a numerical signature of eternal inflation
- Systematical Exploration of the parameter space

Horizon Problem

Horizon Problem

Horizons sketch without inflation

Flatness Problem

Horizon Problem

Horizons sketch without inflation

Horizon Problem

Horizons sketch without inflation

Horizon Problem

Horizons sketch without inflation

