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This year, | will talk about

Generalized G-inflation
|

G = Galileon

Based on work with Masahide Yamaguchi & Jun’ichi Yokoyama
arXiv:1105.5723, PTP accepted



My message Is:

G? is the most general single-field
inflation model

v contains all the (single-field) inflation
models proposed so far as special cases
v no further generalization is possible



Motivation

So many inflation models...
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The most general thing is definitely valuable!



Consider a gravity + scalar system
Q. What is the most general Lagrangian of the form

= L(guyp agw/, 829;“/7 839MV’ T ¢7 a¢7 82¢7 83¢7 S )

having second-order field equations?

A. It is given by the generalized Galileon



Galileon (in flat space)

Nicolis, Rattazzi, Trincherini (2009)

The Galileon is a scalar field with the following properties:
(1) Galilean shift-symmetry L= ¢
0,0 — 0,0+ b

u® = Ou® + by ‘O\\>6 Lo = (06)2

(2) Second order EOM \>(\\
L3 = (09)°0¢
L= (0¢)" [(O9)* = (0,0,6)"]
L5 = (09)* [(O¢)° — 306(0,0,¢)° + 2(0,0,9)°]




Generalized Galileon

The Galileon In flat space can be generalized to give
the most general theory describing scalar + gravity
system with second-order field equations

Deffayet, Esposito-Farese, Vikman (2009);
Deffayet, Pujolas, Sawicki, Vikman (2010);
Deffayet, Gao, Steer, Zahariade (2011)
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The most general single-field inflation model is obtained from
the generalized Galileon = Generalized G-inflation
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Special cases

L4 = Ga(¢. X)R + Gax |(09)° — (V,.V,0)"

Einstein-Hilbert

Non-minimal inflation

(o ™. X < v L4 D G"0,00,0 New Higgs inflation
integrat ‘ RAS Germani, Kehagias (2010)

K = 8WX2%3-InX),

Gy = 49X(7-3mX), —_ _y £(¢)(Gauss-Bonnet)

Gy = 4P X(2-InX),

G5 — _45(1) In X integration by parts



The generalized Galileon in 4D was
already formulated in 1973

International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384

Revisited by Charmousis et al. (201 1) l

Second-Order Scalar-Tensor Field Equations
in a Four-Dimensional Space
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Horndeski & the Galileon
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Cosmological Background

“Friedmann equation” (00 equation)

) FCHA ()H A (- )HP =0

“Kinetic gravity braiding”
Deffayet et al. (2010)

Not diagonal in second derivatives

- . In general, this mixing cannot be undone
¢ = ( W )H - through conformal transformation

Cf. Usual (k-)inflation

1;; does not contain second derivatives of 0

Scalar-field EOM does not contain second derivatives of Yuv



Background example 1

K¢, X) = V() +K(@)X +---,
Gi(¢,X) = gi(¢) +hi(o) X +---.
Slowly-rolling ¢ (Ly= gu(O)R+ - j
Potential-dominated inflation H? ~ L V(9)
6 ga()

Modified friction term in scalar-field EOM

3H [K6+6 (Hhs X + H2had + Hhs X )| ~ =V, +12Hgu

b _ S e M————— e e

can enhance friction

Germani, Kehagias (2010); Kamada et al. (2011)



Background example 2

Shift symmetry: ¢ — ¢ +c, ie, K=K(X), G; = G;(X)

Inflation can be driven by constant kinetic energy

Scalar-field EOM
J+3HI =0 —> Jxa3—0

where *
de Sitter attractor

J:=oKx +6HXGsx
—-6H2¢ (Gux +2XGyuxx)
+2H°X (3G5x +2XGsx x)

H = const.

X = const.

S _ .

Use for dark energy, see Deffayet, Pujolas, Sawicki, Vikman (2010)
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- Tensor perturbations

gij = a*(t)(6;5 + hij)

Quadratic action for tensor perturbations St

Fr >0 G5¢)} :
Stability conditions .
Gr >0 X <H¢G5X — G5¢)}




- Scalar perturbations

gz'j — CL2 (t)62c(5ij

Quadratic action for scalar perturbations S

Stability conditions

XKx +2X*Kxx + 12HpX Gsx
+6HPX Gaxx — 2X Gsy — 2X%Gspx — 6H? Gy

+6| H2 (TXGax +16XGaxx +4X Gaxxx)

—H (Gag + 5XGapx + 2X2G4¢XX)]
+30H3 X Gsx + 26H20 X% Gsx x
+4H?X3Gsxxx — 6H?X (6G54
+9XGrpx +2X°Gsxx),

—¢XGsx +2HG, —8HXGyx
—8HX?Guxx + 0Gug + 2XdGagx
—~H?¢ (5XGsx +2X*Gsxx)

+2H X (3G54 + 2X Gspx)



H and stability

k-inflation: Fg = M}%IE Garriga, Mukhanov (1999)

€ — >0 <—= Stable

In more general cases, the sign of [
and the stability criteria are not correlated

—>» Stable cosmology with H >0 is possible

Interesting scenarios with null energy condition violation:

Creminelli et al. (2006); Creminelli, Nicolis, Trincherini (2010)



Scalar power spectrum

NEREllzea mode: 2( =
4
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ful time coordinate: ;dy =

A
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Sound speed: C? = Fs/Gs
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Power spectrum: Spectral index:
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lensor power spectrum

Power spectrum: Spectral index:
D 89;/2 H2 nTZS—QVT
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can be blue In general

Tensor-to-scalar ratio:

r = 16 (ﬁ)gﬂ (@>—1/2 — 16 Fs Cs
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Conmfpncv relatlon

= _faylor coefficients in K and G

New consistency relation

Usual consistency relation 2
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Conclusion

G? is the most general single-field
inflation model

v contains all the (single-field) inflation
models proposed so far as special cases
v no further generalization is possible

Thank you!



