RESCEU/DENET Summer School @ Kumamoto July 28, 2011

Non-Gaussianity from Curvatons Revisited Takeshi Kobayashi (RESCEU, Tokyo U.)

based on: arXiv:1107.6011

with Masahiro Kawasaki, Fuminobu Takahashi

The Curvaton Mechanism

Linde, Mukhanov '97 Enqvist, Sloth '01 Lyth, Wands '01 Moroi, Takahashi '01

seeds cosmological density perturbations from scalar field fluctuations sourced during inflation (or Horava-Lifshitz gravity, Galilean mechanism, etc.)

- has only been studied for rather trivial curvaton potentials, e.g. quadratic
- however, a quadratic curvaton potential (or more generally, a positively curved potential) cannot produce the red-tilted perturbation spectrum
- concrete microscopic curvaton models also realize intricate energy potentials

- however, a quadratic curvaton potential (or more generally, a positively curved potential) cannot produce the red-tilted perturbation spectrum
- concrete microscopic curvaton models also realize intricate energy potentials

This Work

we investigate density perturbations sourced by a curvaton with a generic energy potential

new features for non-quadratic curvatons

case study: curvaton = pseudo-NG boson

Curvatons with Arbitrary Potentials

Curvatons with Arbitrary Potentials

Curvatons with Arbitrary Potentials non-uniform onset of oscillation for non-quadratic potentials! H ρ_{ϕ} : inflaton $\propto a^{-4}$ ρ_{σ} : curvaton $\delta \rho_{\sigma}$ σ $\propto a^{-}$ $\zeta \sim c_1 \frac{\delta \rho_\sigma}{\rho_\sigma}$ $\delta H_{\rm osc}$

 $\log a$

Additional contributions to the density perturbations!

Density Perturbations

$$\mathcal{P}_{\zeta} = \left(\frac{\partial \mathcal{N}}{\partial \sigma_*} \frac{H_*}{2\pi}\right)^2$$

$$\frac{\partial \mathcal{N}}{\partial \sigma_*} = \frac{r}{4+3r} \left(1 - X(\sigma_{\rm osc})\right)^{-1} \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\} \frac{V'(\sigma_{\rm osc})}{V'(\sigma_*)}$$

 $r \equiv \frac{\rho_{\sigma}}{\rho_{r}}$ @ curvaton decay

* : @ horizon exit
 osc : @ onset of curvaton oscillation

$$X(\sigma_{\rm osc}) \equiv \frac{1}{2(c-3)} \left(\frac{\sigma_{\rm osc} V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} - 1 \right)$$

: effects due to non-uniform onset of oscillation

Density Perturbations

$$\mathcal{P}_{\zeta} = \left(\frac{\partial \mathcal{N}}{\partial \sigma_*} \frac{H_*}{2\pi}\right)^2$$

$$\frac{\partial \mathcal{N}}{\partial \sigma_*} = \frac{r}{4+3r} \left(1 - X(\sigma_{\rm osc})\right)^{-1} \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\} \frac{V'(\sigma_{\rm osc})}{V'(\sigma_*)}$$

 $r \equiv \frac{\rho_{\sigma}}{\rho_{r}}$ @ curvaton decay

* : @ horizon exit
osc : @ onset of curvaton oscillation

spectral index
$$n_s - 1 \equiv \frac{d \ln \mathcal{P}_{\zeta}}{d \ln k} = \frac{2}{3} \frac{V''(\sigma_*)}{H_*^2} + 2 \frac{H_*}{H_*^2}$$

observational data $n_s = 0.963 \pm 0.012$ (WMAP7, 68%CL) requires the curvaton to be tachyonic during inflation (or $\dot{H}/H^2 \sim -0.01$, implying large-field inflation)

Non-Gaussianity

$$f_{\rm NL} = \frac{40(1+r)}{3r(4+3r)} + \frac{5(4+3r)}{6r} \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\}^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1}X'(\sigma_{\rm osc}) + \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\}^{-1} \left\{ \frac{V''(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{V'(\sigma_{\rm osc})^2}{V(\sigma_{\rm osc})^2} - \frac{3X'(\sigma_{\rm osc})}{\sigma_{\rm osc}} + \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}^2} \right\} + \frac{V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} - (1-X(\sigma_{\rm osc}))\frac{V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} \right]$$

 $r \equiv rac{
ho_\sigma}{
ho_r}$ @ curvaton decay

* : @ horizon exit

osc: @ onset of curvaton oscillation

Non-Gaussianity

$$f_{\rm NL} = \frac{40(1+r)}{3r(4+3r)} + \frac{5(4+3r)}{6r} \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\}^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1}X'(\sigma_{\rm osc}) + \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\}^{-1} \left\{ \frac{V''(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{V'(\sigma_{\rm osc})^2}{V(\sigma_{\rm osc})^2} - \frac{3X'(\sigma_{\rm osc})}{\sigma_{\rm osc}} + \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}^2} \right\} + \frac{V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} - (1-X(\sigma_{\rm osc}))\frac{V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} \right]$$

 $r\equiv rac{
ho_{\sigma}}{
ho_{r}}~$ @ curvaton decay

* : @ horizon exit

osc: @ onset of curvaton oscillation

cf. quadratic curvatons

$$f_{\rm NL} = \frac{5}{12} \left(-3 + \frac{4}{r} + \frac{8}{4+3r} \right)$$

 $f_{\rm NL}\gg 1\,$ only for curvatons decaying when subdominant ($\,r\ll 1\,$)

Non-Gaussianity

 $f_{\rm NL} = \frac{40(1+r)}{3r(4+3r)} + \frac{5(4+3r)}{6r} \left\{ \frac{V'(\sigma_{\rm osc})}{V(\sigma_{\rm osc})} - \frac{3X(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right\}^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} (V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} (V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} (V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1} \left[(1-X(\sigma_{\rm osc}))^{-1} X'(\sigma_{\rm osc}) - \frac{(V'(\sigma_{\rm osc}))^{-1} V'(\sigma_{\rm osc})}{\sigma_{\rm osc}} \right]^{-1$

Large f_{NL} (with either sign) possible for both dominant/subdominant curvatons!

 $r \equiv rac{
ho_\sigma}{
ho_r}$ @ curvaton decay

* : @ horizon exit

osc: @ onset of curvaton oscillation

cf. quadratic curvatons

$$f_{\rm NL} = \frac{5}{12} \left(-3 + \frac{4}{r} + \frac{8}{4+3r} \right)$$

 $f_{\rm NL}\gg 1\,$ only for curvatons decaying when subdominant ($\,r\ll 1\,$)

case study : Curvaton = pseudo-NG boson of a broken U(1) symmetry $V(\sigma) = \Lambda^4 \left[1 - \cos\left(\frac{\sigma}{f}\right) \right]$

curvaton decay rate : $\Gamma_{\sigma} \sim \frac{1}{16\pi} \frac{m^3}{f^2} = \frac{1}{16\pi} \frac{\Lambda^6}{f^5}$

case study : Curvaton = pseudo-NG boson of a broken U(1) symmetry $V(\sigma) = \Lambda^4 \left[1 - \cos\left(\frac{\sigma}{f}\right) \right]$

curvaton decay rate : $\Gamma_{\sigma} \sim \frac{1}{16\pi} \frac{m^3}{f^2} = \frac{1}{16\pi} \frac{\Lambda^6}{f^5}$

Density Pert. from a NG-Curvaton

curvaton dominant case,

i.e.
$$r \equiv \left. \frac{\rho_{\sigma}}{\rho_{r}} \right|_{\text{dec}} \gg 1$$

0.8

0.6

0.2

0.4

 σ_*

 πf

1.0

-1

Density Pert. from the Hilltop

curvaton dominant case,

i.e.
$$r \equiv \left. \frac{\rho_{\sigma}}{\rho_{r}} \right|_{\text{dec}} \gg 1$$

When varying only σ_* :

Density Pert. from the Hilltop

 $(f, \Lambda, H_{\text{inf}}, T_{\text{reh}}, \sigma_*)$

 $(f A, H_{inf}, T_{reh}, \sigma_*)$ BE norm. spectral index

$$(f, A, H_{inf}, T_{reh}, \sigma_*)$$

COBE norm. spectral index

 σ_*

$$(f, A, H_{inf}, T_{reh}, \sigma_*)$$

COBE norm.
spectral index

$$\frac{\sigma_*}{\pi f} = 1 - 10^{-4}$$

$$(f, A, H_{inf}, T_{reh}, \sigma_*)$$

COBE norm.
spectral index

$$\frac{\sigma_*}{\pi f} = 1 - 10^{-8}$$

$$(f, A, H_{inf}, T_{reh}, \sigma_*)$$

• COBE norm. • spectral index

$$\frac{\sigma_*}{\pi f} = 1 - 10^{-11}$$

Allowed window broadens significantly towards the hilltop, with non-Gaussianity $10 \lesssim f_{\rm NL} \lesssim 30$.

spectral index

Summary

- We investigated density perturbations sourced by a curvaton with a generic potential.
- A non-quadratic curvaton experiences a non-uniform onset of its oscillations, which can strongly enhance/ suppress the density perturbations.
- f_{NL} can be large with either sign, no matter the curvaton dominates/subdominates the universe upon decay.
- Solution NG-curvations at the hilltop work with a wide range of inflation/reheating scales, while predicting $10 \lesssim f_{\rm NL} \lesssim 30$.
- Opens up new possibilities for the curvaton paradigm.

Backup Slides

δΝ

case $t_{\rm reh} < t_{\rm osc}$:

$$\frac{\partial \mathcal{N}}{\partial \sigma_*} = \frac{r}{4+3r} \frac{\partial}{\partial \sigma_*} \left(\ln \rho_{\sigma \text{osc}} - \frac{3}{4} \ln H_{\text{osc}}^2 \right)$$
$$\frac{\partial^2 \mathcal{N}}{\partial \sigma_*^2} = \frac{16(1+r)}{(4+3r)r} \left(\frac{\partial \mathcal{N}}{\partial \sigma_*} \right)^2 + \frac{r}{4+3r} \frac{\partial^2}{\partial \sigma_*^2} \left(\ln \rho_{\sigma \text{osc}} - \frac{3}{4} \ln H_{\text{osc}}^2 \right)$$

case $t_{\rm reh} > t_{\rm osc}$:

$$\frac{\partial \mathcal{N}}{\partial \sigma_*} = \frac{r}{4+3r} \frac{\partial}{\partial \sigma_*} \left(\ln \rho_{\sigma \text{osc}} - \ln H_{\text{osc}}^2 \right)$$
$$\frac{\partial^2 \mathcal{N}}{\partial \sigma_*^2} = \frac{16(1+r)}{(4+3r)r} \left(\frac{\partial \mathcal{N}}{\partial \sigma_*} \right)^2 + \frac{r}{4+3r} \frac{\partial^2}{\partial \sigma_*^2} \left(\ln \rho_{\sigma \text{osc}} - \ln H_{\text{osc}}^2 \right)$$

Curvaton Dynamics

EOM:
$$\ddot{\sigma} + 3H(t)\dot{\sigma} + \frac{\partial V(\sigma)}{\partial \sigma} = 0$$

necessary condition :

$$\left|\frac{V''}{cH^2}\right| \ll 1,$$

under which the above approximation is a stable attractor

Onset of Curvaton Oscillation

$$\frac{1}{H_{\rm osc}} \frac{\partial H_{\rm osc}}{\partial \sigma_{\rm osc}} = \frac{1}{2} \left(\frac{V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} - \frac{1}{\sigma_{\rm osc}} \right)$$

$$\frac{\partial \sigma_{\rm osc}}{\partial \sigma_*} = \left\{ 1 - \frac{1}{c(c-3)} \frac{V'(\sigma_{\rm osc})}{H_{\rm osc}^3} \frac{\partial H_{\rm osc}}{\partial \sigma_{\rm osc}} \right\}^{-1} \frac{V'(\sigma_{\rm osc})}{V'(\sigma_*)}$$
$$= \left\{ 1 - \frac{1}{2(c-3)} \left(\frac{\sigma_{\rm osc} V''(\sigma_{\rm osc})}{V'(\sigma_{\rm osc})} - 1 \right) \right\}^{-1} \frac{V'(\sigma_{\rm osc})}{V'(\sigma_*)}$$

Hilltop Curvatons

$$V(\sigma) = V_0 - \frac{1}{2}m^2(\sigma - \sigma_0)^2$$

under
$$\frac{\sigma_{\rm osc}}{\sigma_0 - \sigma_{\rm osc}} \gg 1$$
, $\frac{V_0}{m^2(\sigma_{\rm osc} - \sigma_0)^2} \gg 1$,

$$\mathcal{P}_{\zeta}^{1/2} \simeq \frac{3r}{4+3r} \frac{\sigma_0 - \sigma_{\rm osc}}{\sigma_0 - \sigma_*} \frac{H_{\rm inf}}{2\pi\sigma_{\rm osc}}$$

$$f_{\rm NL} \simeq \frac{5(4+3r)}{18r} \frac{\sigma_{\rm osc}}{\sigma_0 - \sigma_{\rm osc}}$$

 $n_s - 1 = -\frac{2}{3} \frac{m^2}{H_{\text{inf}}^2}$

